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Abstract—Parallel sparse matrix-matrix multiplication algo-
rithms (PSpGEMM) spend most of their running time on inter-
process communication. In the case of distributed matrix-matrix
multiplications, much of this time is spent on interchanging the
partial results that are needed to calculate the final product
matrix. This overhead can be reduced with a one dimensional
distributed algorithm for parallel sparse matrix-matrix multipli-
cation that uses a novel accumulation pattern based on loga-
rithmic complexity of the number of processors (i.e., O(log(p))
where p is the number of processors). This algorithm’s MPI
communication overhead and execution time were evaluated on
an HPC cluster, using randomly generated sparse matrices with
dimensions up to one million by one million. The results showed a
reduction of inter-process communication overhead for matrices
with larger dimensions compared to another one dimensional
parallel algorithm that takes O(p) run-time complexity for
accumulating the results.

Keywords—MPI communication pattern, overhead communica-
tion, parallel computing, performance analysis, scalability, sparse
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I. INTRODUCTION

The widespread use and importance of matrix applications
has created a compelling need for efficient algorithms for
matrix-matrix multiplication. Matrix representations of real-
world phenomena have numerous applications in science and
technology, in fields that include electrical engineering, medi-
cal science, physics, quantum chemistry [1], mathematics, and
computer science. Matrix-matrix multiplication is indispens-
able for almost every research field that involves scientific
computation and numerical methods like optimization, lin-
ear algebra, algebraic multigrid [2], finite element analysis,
and tensor contraction [3]. In computer science, areas such
as graphics, networking, wireless communication, video and
audio analysis, image processing, graph theory [4], big data
analysis [5] and language processing [6] use matrix-matrix
multiplication to a great extent. Networks, for example, are
commonly modeled with adjacency matrices: two-dimensional
matrices whose elements represent connections and weights
between a network’s nodes. Repetitive multiplication of adja-
cency matrices can determine multi-hop reachability, transitive
closure and dynamic partitioning within a mobile ad hoc
network.

Researchers have worked for several decades to devise
matrix-matrix multiplication algorithms that outperform the
traditional, O(n3) algorithm. The need for such algorithms
is driven by the processing of very large matrices, often with

trillions of elements. Currently the fastest matrix-matrix multi-
plication algorithm, the Coppersmith-Winograd algorithm, has
a run time complexity of O(n2.375477) [7]. In computations
involving matrices of larger dimensions, the main challenge
for the matrix multiplication algorithm is a scarcity of com-
putational resources. Increasingly, parallel processing is being
used to address this challenge.

In one important special case, the nature of the data being
processed creates particular opportunities for fast multipli-
cation. Sparse matrices, or matrices whose elements consist
largely of zeros, are commonly used to model real-world phe-
nomena. Algorithms for sparse matrix-matrix multiplication
improve on classic algorithms by focusing solely on products
of nonzero elements. These algorithms’ performance depends
on factors that include the number and distribution of nonzero
elements in the matrices to multiply, the structures used to store
the matrices, the number of processors allocated to a compu-
tation, and the efficiency of inter-processor coordination. In
particular, the use efficient communication models and data
structures can greatly speed up parallel multiplication.

Over the past few decades, researchers have extensively
studied the Parallel Sparse Generalized Matrix-Matrix mul-
tiplication problem, hereafter referred to as PSpGEMM [8].
Numerous algorithms ( [8]–[21]) have been designed that
apply a variety of distribution models, storage mechanisms,
and communication models to PSpGEMM. These approaches
have been incorporated into standard libraries and tools such
as BLAS. Despite of all these efforts, however, the impact
of inter-process communication cost on the overall speed up
and scalability has received relatively little attention. The
scalability of any PSpGEMM algorithm depends largely on its
strategy for inter-process communication, due to the amount
of communication needed to exchange partial results between
processors during the compilation of the final product matrix.

This paper describes a comparison of two one-
dimensionally distributed PSpGEMM algorithms in terms of
the impact of inter-process communication cost. The first
one, developed previously by Hoque et. al. [22], uses an
algorithm with O(p) run-time complexity to accumulate partial
results. It is hereafter referred to as the Original version of
PSpGEMM, the other uses a novel O(log(p)) algorithm to
accumulate results. This comparison focuses on how commu-
nication overhead, particularly MPI overhead, impacts these
algorithms’ performance, relative to randomly generated sparse
matrices with dimensions up to one million by one million.
These preliminary results indicate a significant reduction of



inter-process communication overhead for matrices with larger
dimensions compared to the Original PSpGEMM algorithm
[22]. Section II reviews published communication models for
PSpGEMM. Section III presents the algorithms’ method of
matrix-matrix multiplication. Section IV presents the details
of the two algorithms (Original and Logarithmic) in terms of
the communication patterns. Section V presents the results of
performance analysis. Section VI concludes by summarizing
these findings and discussing avenues for future work.

II. RELATED WORK

The scalability and performance of parallel SpGEMM al-
gorithms is highly dependent on inter-process communication,
where most of these algorithms’ execution time is spent. Most
algorithmic designs, however, focus more on computation
techniques rather than optimizing communications. A very few
classical algorithms describe the communication cost of sparse
matrix-matrix multiplication. A unified communication analy-
sis of existing and new algorithms as well as an optimal lower
bound for communication cost of two new parallel algorithms
are given in [9]. In this paper, optimal communication costs of
three 1D algorithms such as Naı̈ve Block Row [8], Improved
Block Row [23] and Outer Product [24] are outlined in terms
of bandwidth costs and latency costs.

In [10] Ballard et al. describe CAPS, a parallel,
communication-optimal algorithm for matrix multiplication.
Their algorithm seeks to efficiently balance the load among
participating processors while minimizing inter-processor com-
munication. It recasts Strassen’s sequential algorithm as a
recursive tree, dividing the multiplication algorithm into 7 sub
problems, based on whether the dimensions of the matrices to
multiply are large (unlimited memory scheme with BFS traver-
sal) or small (limited memory scheme with DFS traversal).

In [11] Ballard et al. describe a hypergraph partitioning
approach for parallel sparse matrix-matrix multiplication. It
models SpGEMM using a hypergraph and reduces the com-
munication cost by communicating between processors along
a critical path of the multiplication algorithm.

In [12] Utrera et al. discuss SpGEMM-related communi-
cation imbalances caused by the communication library and
the interconnection network. The authors characterize this
imbalance as a major source of performance degradation for
sparse matrix-vector multiplication. They analyze their charac-
terization using the fork-join and task based implementations
and MPI protocols.

Most PSpGEMM algorithms assume that an efficient com-
munication model is a natural consequence of an effective
computation model. Only a very few papers describe the
specific overhead due to the distribution and accumulation
of partial results between processors: the source of most
communication overhead. In what follows, we attempt to
address the need for a better understanding of these overheads
by providing a theoretical framework for an efficient partial
results accumulation pattern; an implementation the pattern;
and an analysis of the implementation’s efficiency.

III. OUTER PRODUCT MATRIX MULTIPLICATION

Both of the algorithms studied use outer product matrix
multiplication to solve AB = C, where A and B are sparse

Fig. 1: Distribution of an input matrix using outer product
multiplication on four processors.

matrices of size N × N . We assume that both A and B are
symmetric matrices.

Both algorithms parallelize a serial method for matrix
multiplication that begins by computing the outer product of
A and B. This method takes the ith column of matrix A and
multiplies it by the jth row of matrix B to produce a sub
matrix Ci of dimension N × N . This is continued such that
each column of A and each row of B is multiplied together,
which produces a total of N sub matrices: C1, . . . , CN . The
resulting sub matrices are summed element-wise to produce
the final result, matrix C, as shown in equation 1:

N∑
i=1

Ci = C. (1)

In the following description of this algorithm’s parallel
implementations, we let p denote the total number of pro-
cessors, N/p the number of rows or columns of the input
matrix sent to each processor Pi and α the average number
of non-zero elements in each row/column of an input matrix.
Initially, the algorithms divide input matrices A and B into
blocks of size N/p, distributing them over p processors. Each
processor computes the outer product on its part of the matrix
by multiplying each column in the block with each row in
the block to produce a sub matrix Ci. The average number of
non-zero elements in each row/column of a sub matrix Ci is at
most α2. Figure 1 illustrates the distribution of a matrix over
four processors to produce four sub matrices.

Once each processor computes the sub-matrix that contains
its portion of the results, the partial results are merged through
the sending and receiving of data to corresponding processors.
This merging is done based on the patterns outlined in the next
section. Because of the resulting matrix’s size (on the order of
1012 elements for the largest input size 106), the final matrix
C is left distributed over the processes.

IV. IMPLEMENTATION OF PSPGEMM ALGORITHM

We present two versions of parallel sparse matrix-matrix
multiplication algorithms with distinct merging schema to



Fig. 2: Merging results onto process two using four processes
in total.

illustrate a reduction in complexity created by a reduction in
communication overhead. Both versions use the same storage
mechanism and hashing techniques as described in [22]. The
algorithms differ only in number of times data is sent and
received between nodes during the merging of partial results
that follows the computation of the sub matrices. We also
present the mandatory and auxiliary storage mechanism for
the two algorithms to exchange data.

A. Original Merging Pattern

The first merging pattern accumulates its partial results as
follows. After each sub matrix is calculated, it is repartitioned
into p column-wise blocks and then redistributed. Each process
sends the ith block of its sub matrix to the corresponding ith
processor to be merged with the partial results being received
from the other processes. Figure 2 illustrates processor P2

merging its results with the remaining three processors: pro-
cessors P1, P3, and P4 send partial results from their second
block to P2, and processor P2 sends the partial results in the
first, third, and fourth block to P1, P3, and P4, respectively.

Based on the distribution process described in section II,
if each processor receives dNp e columns upon the distribution
of the input matrices, the total number of non-zero elements
each process contains after computing its sub matrix Ci is
equal to α2dNp e. Because each process exchanges data with
p − 1 processes, every process communicates an average of
p−1
p α2dNp e elements. Accordingly, the amount of data that a

process transfers to other processes using this communication
pattern has complexity of O(α

2N
p ) [22].

The total communication overhead is determined by the
number of processes that send and receive data, the amount of
data transferred, and delays created by the irregular distribution
of non-zero elements throughout the input matrices and the
resulting variation in the number of computations each process
needs to calculate its portion of the partial result. Let the
largest of these delays, the synchronization delay, be denoted
by δ. The total communication overhead is then given as
(p− 1)(dNp e+ δ).

Fig. 3: Logarithmic communication between processes.

B. Logarithmic Merging Pattern

In the proposed Logarithmic merging pattern, each process
Pi sends its partial results to another process in log(p) number
of stages where p is the total number of processes involved
in calculating the partial results. In each of these stages, the
process Pi divides its total partial result matrix into two bins.
The first bin contains the elements of the partial matrix whose
column indexes are less than a mid-value. The second contains
the elements whose column indexes are greater or equal to
this mid-value. The mid-value is calculated in each stage for
a particular computing process from the number of column-
wise blocks per process. This calculation also determines a
low index (l) and a high index (h), based on the number of
processes (p) and a process’s rank: a unique number assigned
to each processor. These indices determine which bin to send
and which to receive.

After dividing the partial result matrices into two bins,
process Pi calculates the rank (r) of another process Pj with
which to interchange bins. Pi then exchanges half of its partial
results with Pj by sending one of the two bins and receiving
the other.

Figure 3 illustrates the merging pattern for 8 processes
where each process communicates with other processes in 3
(i.e., log2(8)) stages. In each stage, a processor Pi determines
another processor Pj to send to, along with the bin to send. For
example, in the first stage P1 sends its second bin to P5, while
P5 sends its first bin to P1. Each process Pi distributes half of
the partial results to Pj and discards the contents of the bin that
was sent while appending the contents that it receives to its
other bin. For example, P1 appends the contents received from
P5 to its first bin and removes the contents from its second
bin. Similarly, P5 appends the contents received from P1 to
its second bin and removes the contents from its first bin. The
gray areas in figure 3 indicate the removed contents.

Since each process divides its partial results into two bins at
each stage, a process creates a total of p bins after completing
the log(p) number of stages. In the final stage, each process
contains partial results from each of the p processes including
itself. For example,

• In stage 1, results are exchanged between process pairs
P1 and P5; P2 and P6; P3 and P7; and P4 and P8.



Fig. 4: Calculation of l, h, r and b values.

In this exchange, each process acquires one additional
set of partial results, generated by the other. Following
stage 1, processes pairs P1 and P5; P2 and P6; P3 and
P7; and P4 and P8 share each others’ results.

• In stage 2, results are exchanged between P1 and
P3; P2 and P4; P5 and P7; and P6 and P8. In this
exchange, each process acquires two additional sets
of partial results: one set generated by the exchange’s
other process and a second this other process acquired
during stage 1. Following stage 2, processes P1, P3,
P5, and P7 share results, as do processes P2, P4, P6,
and P8.

• In stage 3, results are exchanged between P1 and
P2; P3 and P4; P5 and P6; and P7 and P8. In this
exchange, each process acquires the remaining four
sets of partial results. Following stage 3, all processes
have one another’s partial results.

At each stage, each process must determine a low value, a
high value, the rank of another process with which to exchange
data, and the bin (one of two) to send to the other process. Let

rank = the computing process’s rank
s = the current stage

bpp = number of column-wise blocks per process
half = the mid-value for dividing the partial results

Each process then uses the algorithm from figure 4 to
calculate l, the process’s low value for this stage; h, the
process’s high value for this stage; b, the index of the bin
to send; and r, the other process’s rank.

Figure 5 shows the Logarithmic algorithm’s procedure
for managing overall inter-process communication. In this

Fig. 5: Logarithmic merging algorithm.

algorithm the mid-value is calculated for diving the partial
results into two bins.

Because the Original and Logarithmic algorithms imple-
ment identical methods for computing each matrix’s partial
results, each process’s computations on each of its sub ma-
trices will average α2dNp e operations resulting in O(α2dNp e)
complexity. Based on the merging schema in the proposed
communication pattern, the partial results are accumulated
in log2(p) stages where p is the number of processes. On
each stage, any one process of the p processes transfers on
average 1

p th of the total data, i.e., on average the amount is
α2dNp e. Since the accumulation of partial results is done in
log2(p) stages, the total amount of data transferred between
processes is log2(p)α2dNp e, which results in a complexity of
O(log2(p)α

2dNp e). Similarly to the delay in communication
caused by varying computation times between nodes, the
inclusion of the synchronization delay between nodes causes
the total overhead communication to have complexity of
O(log2(p)α

2dNp e+ δ).

C. Data Structures

Storing just the non-zero data elements of a sparse matrix
greatly reduces the amount of space that such matrices con-
sume. The two algorithms use lists (e.g., vectors) to store a
matrix’s data elements. This list pairs each data element with
its row and column index.

The matrices generated by the outer product computations
are stored in a hash table. Each element’s hash key is generated
from its row and column indices as its hash key. Hash keys are
uniform over the size of the hash table. Collisions resulting
from the hashing of multiple elements to the same key are
managed using external hashing: i.e., with a key-indexed linked
list. Each hash table stores partial results as well as a portion
of the final result in the end.

In order to exchange a block of data with other proces-
sors, partial results must be copied from the hash table to a



Fig. 6: ETSU HPC Clusters

contiguous chunk of sequential memory (e.g., an array).

V. PERFORMANCE ANALYSIS

The performance of the two PSpGEMM algorithms was an-
alyzed on Knightrider, one of two high-performance computing
clusters at East Tennessee State University’s High Performance
Computing Center (figure 6). Knightrider, which the university
obtained in 2011, consists of 48 HP Proliant BL280c G6
compute nodes and 1 HP DL380 G7 master node. The cluster
totals 588 processors with 2.3 terabytes of memory, where each
node contains a dual Xeon X5650 2.66 GHz processor, 12
cores, and 48 gigabytes of memory. The nodes are connected
using a 4x QDR Infiniband interconnect and Voltaire 36-port
Infiniband switches. The cluster hosts a total of 30 terabytes
of central storage on its hard drives and 160 gigabytes of local
storage on its compute nodes [25].

Each of the PSpGEMM algorithms was evaluated in terms
of its total execution time, total distributed computing time,
average computation time per process, total MPI communi-
cation overhead, and average communication overhead per
process. The experimental parameters that were varied include
the input matrix’s dimension (up to one million) and the
number of computing processes (up to 256). The total number
of processes excludes a separate, master process, which both
algorithms use to load the input file into memory: only the
computation nodes are included in the calculations.

As indicated by figures 7 and 8, the Logarithmic merging
pattern reduces the average communication overhead and total
communication overhead incurred by the Original merging
pattern. Figure 9 shows that Original merging algorithm and
the Logarithmic merging algorithm exhibit almost equal total
overhead communication for input file N = 100, 000. For
the larger input sizes of N = 500, 000 and N = 1, 000, 000,
the proposed merging algorithm exhibits lower total overhead
communication. This may suggest that the greatest benefits

Fig. 7: Average communication overhead for N = 1M .

Fig. 8: Total communication overhead for N = 1M .

Fig. 9: Total overhead communication for N = 100K,
N = 500K, and N = 1M .



Fig. 10: Total execution time for N = 100K, N = 500K,
and N = 1M .

from the Logarithmic algorithm occur for larger matrices,
which is precisely what the algorithm is designed for. Like-
wise, for the smallest input size, the Original merging pattern
and the Logarithmic pattern achieved almost equal total exe-
cution time (Figure 10).

VI. CONCLUSION AND FUTURE WORK

In this paper, we have explored two merging patterns
for accumulating the partial results of sparse matrix-matrix
multiplication in parallel. A theoretical framework and sup-
porting implementation have been developed for a merging
pattern where each node sends and receives half of its data in
log2(p) iterations, resulting in total communication overhead
of O(log2(p)(z

2dNp e + δ)). Based on the performance on
the high-performance computing cluster Knightrider, the data
collected for three input sizes (100K, 500K, 1M) shows that
the proposed Logarithmic pattern, as predicted, incurs lower
communication overhead, which in turn reduces the total
execution time.

Several issues related to the algorithms’ relative perfor-
mance still need to be addressed. Currently, the Logarithmic
merging algorithm assumes that the number of processors in
use is an exact power of 2. This restriction will be removed
in a forthcoming version of this algorithm, which will allow
it to run on any number of processors. One particular issue of
the Logarithmic merging pattern is its failure to yield as great
of an improvement over the Original linear merging pattern as
anticipated. Our analysis attributes this failure to the overhead
incurred by copying data from a processor’s hash table into
a contiguous package for transmission. Our future study will
focus more on the optimization of the data packaging overhead.

Another topic of particular interest is the Logarithmic
algorithm’s scalability. This can be assessed by running the
algorithm at a more powerful facility like Oak Ridge National

Lab [26] for larger number of processors. Exploring the
performances based on different sizes and implementations of
the hash table and varying the sparsity and distribution of non-
zero elements in the input matrices can help obtain additional
information concerning the scalability and characteristics of
the Logarithmic merging algorithm.

REFERENCES

[1] J. VandeVondele, U. Borstnik, and J. Hutter, “Linear scaling self-
consistent field calculations with millions of atoms in the condensed
phase,” Journal of chemical theory and computation, vol. 8, no. 10, pp.
3565–3573, 2012.

[2] W. Briggs, “van e. henson, and s. mccormick,” A Multigrid Tutorial,,
2000.

[3] J. R. Gilbert, V. B. Shah, and S. Reinhardt, “A unified framework
for numerical and combinatorial computing,” Computing in Science &
Engineering, vol. 10, no. 2, pp. 20–25, 2008.

[4] S. Van Dongen, “Graph clustering via a discrete uncoupling process,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp.
121–141, 2008.
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