
Methodologies forQuantifying (Re-)randomization Security and
Timing under JIT-ROP

Salman Ahmed∗, Ya Xiao∗, Kevin Snow†, Gang Tan‡, Fabian Monrose§, Danfeng (Daphne) Yao∗
∗Computer Science, Virginia Tech, †Zeropoint Dynamics, LLC, ‡Computer Science and Engineering, Penn State

University, §Computer Science, UNC at Chapel Hill
{ahmedms,yax99,danfeng}@vt.edu,kevin@zeropointdynamics.com,gtan@cse.psu.edu,fabian@cs.unc.edu

Abstract
Just-in-time return-oriented programming (JIT-ROP) allows one
to dynamically discover instruction pages and launch code reuse
attacks, effectively bypassing most fine-grained address space lay-
out randomization (ASLR) protection. However, in-depth questions
regarding the impact of code (re-)randomization on code reuse at-
tacks have not been studied. For example, how would one compute
the re-randomization interval effectively by considering the speed of
gadget convergence to defeat JIT-ROP attacks?; how do starting point-
ers in JIT-ROP impact gadget availability and gadget convergence
time?; what impact do fine-grained code randomizations have on the
Turing-complete expressive power of JIT-ROP payloads? We conduct
a comprehensive measurement study on the effectiveness of fine-
grained code randomization schemes, with 5 tools, 20 applications
including 6 browsers, 1 browser engine, and 25 dynamic libraries.
We provide methodologies to measure JIT-ROP gadget availability,
quality, and their Turing-complete expressiveness, as well as to
empirically determine the upper bound of re-randomization inter-
vals in re-randomization schemes using the Turing-complete (TC),
priority, MOV TC, and payload gadget sets. Experiments show that
the upper bound ranges from 1.5 to 3.5 seconds in our tested appli-
cations. Besides, our results show that locations of leaked pointers
used in JIT-ROP attacks have no impacts on gadget availability, but
have an impact on how fast attackers find gadgets. Our results also
show that instruction-level single-round randomization thwarts
current gadget finding techniques under the JIT-ROP threat model.

1 Introduction
Just-in-time return-oriented programming (JIT-ROP) (e.g., [91]) is
a powerful attack technique that enables one to reuse code even
under fine-grained address space layout randomization (ASLR).
Fine-grained ASLR, also known as fine-grained code diversification
or randomization, reorders and relocates program elements. Fine-
grained randomization would defeat conventional ROP code reuse
attacks [88], as the attacker no longer has direct access to the code
pages of the victim program and its libraries. In other words, a
leaked pointer only unlocks a small portion of the code region under
fine-grained code randomization, seriously limiting the attack’s
ability to harvest code for ROP gadget purposes.

JIT-ROP attacks have the ability to discover new code pages
dynamically [91], by leveraging control-flow transfer instructions,
such as call and jmp. Under fine-grained code randomization, the
execution of a JIT-ROP attack is complex, as code page discovery
has to be performed at runtime. From the defense perspective, re-
randomization techniques (TASR [6], Shuffler [105], Remix [21],
CodeArmor [19], RuntimeASLR [66], and Stabilizer [29]) have the

potential to defeat JIT-ROP attacks. Besides, protections related to
memory permission such as XnR [4], NEAR [104], Readactor [27],
destructive read such as Heisenbyte [96], and pointer indirection
such as Oxymoron [5] specifically aim to thwart JIT-ROP attacks.
Precise implementation of Control-Flow Integrity (CFI) can protect
an application from all control-oriented attacks. The recently pro-
posed Multi-Layer Type Analysis (MLTA) [65] technique improves
CFI precision greatly by improving the accuracy in identifying
indirect call targets.

Even though the great promise of CFI for protecting control-
oriented attacks, attackers may find ways to launch new exploits
such as control-oriented [24, 38, 45, 84] and non-control-oriented [14,
55, 56] exploits as demonstrated before, where the exploits conform
with CFI. A prime requirement of many of these exploits is informa-
tion/pointer leakage. Thus, a measurement mechanism to design
risk heuristics-based pointer selection and prioritization techniques
is necessary for protecting pointers from leakage. Besides, from a
defense-in-depth perspective, it is important for a critical system
to deploy multiple complementary security defenses in practice.
A single defense may fail due to deployment issues such as imple-
mentation flaws or configuration issues. Thus, despite the strong
security guarantees of CFI, our ASLR investigation is still extremely
necessary.

Re-randomization techniques continuously shuffle the address
space at runtime. This continuous shuffling breaks the runtime code
discovery process by making the already discovered code pages
obsolete. However, the interval between two consecutive random-
izations must satisfy both performance and security guarantees.

Quantitative evaluation of how code (re-)randomization impacts
code reuse attacks, e.g., in terms of interval choices, gadget avail-
ability, gadget convergence, and speed of convergence has not been
reported. We define gadget convergence as the attack stage where
an attacker has collected all the necessary gadgets. For example, if
an attacker has found at least one gadget for each type of Turing-
complete (TC) operations, then the gadget set is TC convergence.
TC operations include memory, assignment, arithmetic, logic, con-
trol flow, function call, and system call [81].

(Re-)randomization techniques make it difficult for current gad-
get finding techniques to discover all gadgets. Thus, in-depth and
systematic measurement is necessary, which can provide new in-
sights on the impact of code (re-)randomization on various attack
elements, such as code pointer leakage, various gadget sets, and
gadget chain formation. It is also important to investigate how
to systematically compute an effective re-randomization interval.
Current re-randomization literature does not provide a concrete

methodology for experimentally determining an upper bound of re-
randomization intervals. Shorter intervals (e.g., millisecond-level)
incur runtime overhead whereas longer intervals (e.g., second-level)
give attackers more time to launch exploits. An upper bound would
help guide defenders to make informed interval choices.

We report our experimental findings on re-randomization in-
terval choices considering the speed of gadget convergence, code
pointer leakage, gadget availability, and gadget chain formation,
under fine-grained ASLR and re-randomization schemes.

Launching exploits is not a feasible measurement methodology
to evaluate ASLR’s effectiveness, due to i) low scalability – exploit
payload is not platform or application portable, ii) failure to exploit
does not necessarily mean security, and iii) low reproducibility. Our
evaluation involves up to 20 applications, including 6 browsers, 1
browser engine, and 25 dynamic libraries.

We designed a measurement mechanism that allows us to per-
form JIT-ROP’s code page discovery in a scalable fashion. Thismech-
anism enables us to compare results from a number of programs
and libraries under multiple ASLR conditions (coarse-grained, fine-
grained function level, fine-grained basic block level, fine-grained
instruction, and register levels). Our key experimental findings and
technical contributions are summarized as follows.

• Weprovide amethodology to compute the upper boundT for
re-randomization intervals. If the re-randomization interval
is less than T, then a JIT-ROP attacker is unable to obtain
various gadget sets such as the Turing complete gadget set,
priority gadget set, MOV TC gadget set, and gadgets from
real-world payloads (see the definitions of gadget sets in
Section 2). We compute the upper bound T by measuring the
minimum time for an attacker to find a specific gadget set,
i.e., the shortest time to reach gadget convergence for the
gadget set. The upper bound ranges from 1.5 to 3.5 seconds
in our tested applications such as nginx, proftpd, firefox, etc.

• Our findings show that starting code pointers do not have
any impact (i.e., zero standard deviations) on the reachability
from one code page to another. Every code pointer leak is
equally viable for derandomizing an address space layout,
suggesting that an attacker’s discovered gadgets eventually
converge to a gadget set no matter where the starting pointer
is.

• Our findings also show that the starting code pointers have
an impact on the speed of convergence. The time for a JIT-
ROP attacker to discover a gadget set varies with the loca-
tions of starting code pointers. In our experiments, the time
for obtaining the Turing-complete gadget set ranges from
2.2 and 5.8 seconds.

• We also present a general methodology for quantifying the
number of JIT-ROP gadgets. Our results show that a single-
round instruction-level randomization scheme can limit the
availability of gadgets up to 90% and break the Turing-complete
operations of JIT-ROP payloads. Also, fine-grained random-
ization slightly degrades the gadget quality, in terms of
register-level corruption. A stack has a higher risk of re-
vealing dynamic libraries than a heap or data segment be-
cause our experiments show that stacks contain 16 more libc
pointers than heaps or data segments on average.

Besides, we distill common attack operations in existing ASLR-
bypassing ROP attacks (e.g., [8, 15, 32, 91]) and present a generalized
attack workflow that captures the tasks and goals. This workflow
is useful beyond the specific measurement study.

2 Threat Model and Definitions
Coarse-grained ASLR (or traditionally known as only ASLR [98])
randomly relocates shared libraries, stack, and heap, but does not
effectively relocate the main executable of a process. This defense
only ensures the relocation of the base address of a segment or
module. The internal layout of a segment of the module remains un-
changed. The Position Independent Executable (PIE) option allows
the main executable to be run as position independent code, i.e., PIE
relocates the code and data segments. For comparison purposes, we
performed experiments on coarse-grained ASLR with PIE enabled
on a 64-bit Linux system.

Fine-grained ASLR, aka fine-grained code randomization or code
diversification, attempts to relocate all the segments of the main
executable of a process, including shared libraries, heap, stack,
and memory-mapped regions and restructures the internal layouts
of these segments. The granularity of the randomization varies,
e.g., at the level of functions [25, 43, 58], basic blocks [21, 59,
103], instructions [52], or machine registers [27, 53]. We evalu-
ated randomization schemes at various levels of granularities using
Zipr1 [50], Selfrando2 (SR) [25], Compiler-assisted Code Randomiza-
tion3 (CCR) [59], andMulticompiler4 (MCR) [53]. We also evaluated
Shuffler [105], a re-randomization tool. We are unable to test other
tools due to various robustness and availability issues.

We assume standard defenses such as W⊕X and RELRO are
enabled. W⊕X specifies that no address is writable and executable
at the same time. RELRO stands for Relocation Read Only. It ensures
that the Global Offset Table (GOT) entries are read-only. RELRO is
now by default deployed on mainstream Linux distributions.
Layered defenses. CFI and Code Pointer Integrity (CPI) solutions
are very powerful techniques. Yet, it is still necessary for one to
experimentally measure the effectiveness of various defense im-
plementations in practice (e.g., CPI enforcement with spatial and
temporal guarantees, CFI implementations with various granular-
ities like [12]). From a measurement perspective, it is useful and
necessary to isolate various defense factors. Decoupling them helps
one better understand the individual factor’s security impact. Oth-
erwise, it might be too complicated to interpret the experimental
results. This is the reasonwe chose to focus onASLR defenses in this
work and omit other defenses (e.g, CFI [1, 28, 42, 70, 72, 78, 107, 108]
and CPI [5, 26, 37, 61, 62, 67, 69]. For similar reasons, we also omit
memory permission protections (e.g., XnR [4], NEAR [104], Readac-
tor [27] and Heisenbyte [96]) for this paper. Execute-only-Memory
(XOM5) [64] and Execute-no-Read (XnR) [4] style defenses are also
powerful. But, attacks such as AOCR [82] and code inference [92]
are still possible with these defenses. We also discuss the need for

1https://git.zephyr-software.com/opensrc/irdb-cookbook-examples
2https://github.com/immunant/selfrando
3https://github.com/kevinkoo001/CCR
4https://github.com/securesystemslab/multicompiler
5XoM is now supported natively at the hardware level on x86 systems with memory
protection keys (MPK) support and Armv7-M or Armv8-M processors.

2

measuring code pointer protection solutions under the JIT-ROP
model in Section 6.

We assume attackers have already obtained a leaked code pointer
(e.g., a function or a virtual table pointer) through remote exploita-
tion of a vulnerability. Such an assumption is standard in existing
attack demonstrations. Also, fine-grained code randomization is
applied in every executable and associated library in a target system
(unless specified otherwise). A JIT-ROP attacker knows nothing
about the applied fine-grained randomization.
Native vs. WebAsm vs. JavaScript version of JIT-ROP. While
the original JIT-ROP attack was demonstrated in a browser using
JavaScript, the attack approach has general applicability in both
native and scripting environments. Our experiments are focused
on the native execution of JIT-ROP attacks. We conducted the ex-
periments for measuring the re-randomization upper bound using
the native JIT-ROP code module. The execution time of WebAssem-
bly is within 10% to 2x of native code execution [49]; JavaScript
is on average 34% slower than WebAssembly [49]. Thus, our re-
randomization intervals measured using the native execution would
be conservatively applicable for the scripting environments as well.
Besides, JIT-ROP is not related to the JIT compilers of JavaScript
(JS) engines and does not use any flaws of JIT compilers to per-
form a code-reuse attack, though some work [3] uses such flaws.
JIT-ROP harvests gadgets from a target binary’s static code, which
is finely randomized; it does not harvest gadgets from dynamically
generated code (e.g., scripts). Thus, JS or WebAsm versions do not
make substantial differences in gadget availability.

Next, we discuss the terms of Turing-complete gadget set, prior-
ity gadget set, MOV TC gadget set, re-randomization upper bound,
minimum footprint gadgets, and extended footprint gadgets.

Definition 1. Turing-complete gadget set refers to a set of gad-
gets that covers the Turing-complete operations including memory
operations (i.e., load memory LM and store memory SM gadgets),
assignments (i.e., load register LR and move register MR gadgets),
arithmetic operations (i.e., arithmetic AM, arithmetic load AM-LD,
and arithmetic store AM-ST gadgets), logical operations (i.e., logical
gadgets), control flow (i.e., jump JMP gadgets), function calls (i.e.,
CALL gadgets), and system calls (i.e., system SYS gadgets) [81].

Definition 2. The upper boundTA
P of a re-randomization scheme

P under a JIT-ROP attacker A is the maximum amount of time
between two consecutive randomization rounds that prevents A
from obtaining a Turing-complete, priority, MOV TC, or payload
gadget set, i.e., for any interval T ′A

P < TA
P , the set of gadgets

obtained under T ′A
P does not converge to any of the four gadget

sets.

Extended footprint (EX-FP) gadgets: A gadget is an extended
footprint gadget if it is an instance of the Turing-complete gadget
set or an instance of attack-specific gadgets. An EX-FP gadget may
contain additional instructions that may cause side effects in an
attack payload. EX-FP gadgets include longer memory addressing
expressions.

Minimumfootprint (MIN-FP) gadgets: Aminimum footprint
gadget is an instance of the Turing-complete gadget set or attack-
specific gadgets without causing any side effects.

Our definition of the Turing-complete gadget set represents our
best efforts, by no means the only way. For example, a pair of
load (LM) and store (SM) gadgets may potentially replace a move
(MR) gadget. However, they may not be directly equivalent due
to possibly mismatching memory offsets of EX-FP load gadgets or
the scarcity of MIN-FP load gadgets. Excluding load-n-store from
the Turing-complete gadget set might underestimate attackers’
capabilities, while including them might overestimate attackers’
capabilities. We perform our measurements considering the Turing-
complete gadget set that enables the highest expressiveness of
ROP attacks. However, under this condition, our results might
underestimate the attackers’ capabilities. To balance an attacker’s
capabilities, we further break down the Turing-complete gadget
set into two smaller gadget sets: i) priority gadget set and ii) MOV
TC gadget set. The priority gadget set includes 10 most frequently
used gadgets in 15 real-world ROP chains from Metasploit. The
MOV Turing-complete gadget set [35] requires six MOV gadgets
and four unique registers. Besides, we also include three real-world
ROP payloads from Metasploit in our measurement.

New metrics proposed by Brown and Pande’s [11] work – func-
tional gadget set expressivity and special-purpose gadget availabil-
ity – are new leads that will help relax the expressiveness condition
of the Turing-complete gadget set in the future.

Our security definition of the upper bound in Definition 2 is spe-
cific to the JIT-ROP threat, and is not applicable to other threats (e.g.,
side-channel threats). A shorter interval may still allow attackers to
gain information. However, as our Section 3 shows, without gadgets
that information may not be sufficient for launching exploits.

3 JIT-ROP vs. Basic ROP Attacks
We manually analyze a number of advanced attacks to extract
common attack elements and identify unique requirements. We
illustrate the key technical differences between JIT-ROP and con-
ventional (or basic) ROP attacks. This section helps one understand
our experimental design in Section 4 and findings in Section 5.
We analyze various attack demonstrations with a focus on attacks
(e.g., [8, 15, 32, 91]) in our threat model.

Figure 1: An illustration of the commonalities and differ-
ences between a conventional (or basic) ROP attack (bottom)
and a JIT-ROP attack (top). The top gray-box highlights the
key steps in JIT-ROP to overcome fine-grained ASLR.

To overcome both coarse- and fine-grained ASLR and conduct an
attack to gain privileged operations, an attacker needs to perform
the tasks presented in Figure 1. The attack workflow has three
major components: memory layout derandomization, system
access, and payload generation.

3

3.1 Memory Layout Derandomization

Derandomizing an address space layout is the key for mounting
code-reuse attacks. Due to the W⊕X defense, attackers need to
derandomize the memory layout to discover gadgets (steps 2 - 4
for JIT-ROP and steps 2′ and 4′ for basic ROP in Figure 1). Usu-
ally, attackers leverage memory corruption vulnerabilities to leak
memory [94] and derandomize an address space layout using the
leaked memory. This step requires overcoming several obstacles.
Memory disclosure. The most common way of derandomizing
memory layout is through a memory disclosure vulnerability. At-
tackers use vulnerabilities in an application’s memory (e.g., heap
overflows, use-after-free, type confusion, etc.) and weaknesses in
system internals (e.g., vulnerabilities in the glibc malloc implemen-
tation or its variants [2, 51], Heap Feng Shui [93], and Flip Feng
Shui [80]) to leak memory contents (Steps 2 and 2′). Details on
memory corruption can be found in [41, 95] and an example in [94].
Code reuse. Due to W⊕X defense, adversaries cannot inject code
in their payload. ROP [88] and its variants Jump-Oriented Pro-
gramming (JOP) [10] and Call-Oriented Programming (COP) [45]
can defeat this defense. These techniques use short instruction se-
quences (i.e., gadget) from the code segments of a process’ address
space and allow an adversary to perform arbitrary computations.
ROP tutorials can be found in [34, 91]. The difference between basic
ROP [88] and JIT-ROP [91] is described next.
Basic ROP. Coarse-grained ASLR only randomizes the base ad-
dresses of various segments and modules of a process. The content
of the segments and modules remains unchanged. Thus, it is feasi-
ble for an adversary to launch a basic ROP attack [97] using gadgets
given a leaked address from the code segment of interest. The ad-
versary only needs to adjust the addresses of pre-computed gadgets
w.r.t. the leaked address. Step 4′ in Figure 1 is about this task.
Just-in-time ROP. Fine-grained ASLR randomizes the base ad-
dresses, as well as the internal structures of various segments and
modules of a process. Thus, simply adjusting the addresses of pre-
computed gadgets (as in the basic ROP) no longer works. An at-
tacker needs to find gadgets dynamically at the time of an exploit.
Scanning a process’ address space linearly for gadgets by starting
from a disclosed code pointer may not be effective because this
linear scanning may lead to crash the process due to reading an un-
mapped memory. A powerful technique introduced in JIT-ROP [91]
is recursive code page harvest, which is explained next.

The recursive code harvest technique exploits the connectiv-
ity of code in memory to derandomize and locate instructions (step
3 in Figure 1). The technique identifies gadgets at runtime by read-
ing and disassembling the text segment of a process. The technique
computes the page number from a disclosed code pointer and reads
the entire 4K data of that page. A light-weight disassembler con-
verts the page data into instructions. The code harvest technique
searches for chain instructions, such as call or jmp instructions to
find pointers to other code pages.

An illustration is shown in Figure 2. The code harvest process
starts from the disclosed pointer (0x11F95C4), reads 4K page data
(0x11F9000-0x11F9FFF), disassembles the data, searches for call and
jmp instructions to find other pointers (0x11FB410 and 0x11FCFF4)
to jump to those code pages. This process is recursive and stops
when all the reachable code pages are discovered.

Snow et al. demonstrated the JIT-ROP attack in a browser. Since
exploiting a memory corruption bug remotely covers a wide variety
of exploits, a browser is an ideal interface for JIT-ROP attacks. The
scripting environment of a browser enables easy interfacing of a
JavaScript-based JIT-ROP attack payload. Similarly, JIT-ROP attack
payload can be embedded into a PDF reader that supports JavaScript
(e.g., Adobe Reader). However, an attacker must convert any non-
scripting attack code to script for the scripting environment. For
example, the original JIT-ROP framework was written in C/C++ and
was transpiled to JavaScript to demonstrate on Internet Explorer.

Figure 2: An illustration of the recursive code harvest pro-
cess of JIT-ROP [91]. An adversary discloses an address from
the main executable or libraries (in this case from the main
executable) of an application through a vulnerability.

Gadget identification. In step 4 of Figure 1, attackers identify
gadgets by scanning for byte values corresponding to ret opcodes
(e.g., 0xC2, 0xC3) from the read code pages and perform a narrow-
scoped backward disassembly. The adversary performs step 3 and
4 repeatedly to find required gadgets for the target exploit.

3.2 System Access
Attackers need to issue system APIs or gadgets to perform privi-
leged operations. If the CFI defenses (e.g., BCFT [42], CCFIR [107]
and bin-CFI [108]) are not enforced, adversaries do not need to
invoke the entire functions to ensure legitimate control flow. An
adversary can just chain together enough gadgets for setting up
the arguments of a system call and invoking it. This observation
is particularly true for Linux, which is the focus of this paper. In
Windows exploits [91], the approach can be slightly different, as
adversaries commonly invoke a system API instead of invoking a
system call directly. Syscall gadgets can be found in an application’s
code or dynamic library. For basic ROP attacks, attackers can adjust
pre-computed system gadgets from dynamic libraries, given that
she manages to obtain a code pointer from a dynamic library (e.g.,
libc). Step 9 in Figure 1 is for this task. This task is performed man-
ually and offline. The attacker may obtain the library code pointer
from an application’s stack or heap or data segment. One can find
system gadgets through step 4 in JIT-ROP.

3.3 Payload Generation
Attackers generate payloads by putting many pieces (e.g., gadgets,
functions, constants, strings, etc.) together. This process must en-
sure a setup for calling system functions or system gadgets. An
attacker generates a payload dynamically at step 5 in the pres-
ence of fine-grained code randomization or manually at step 5′
in the presence of coarse-grained code randomization and stores
the payload in a stack/heap. Because a payload is primarily a set

4

of addresses that point to some existing code in an application’s
address space, attacks do not execute anything stored in a stack-
/heap, which is protected by W⊕X. An attacker may utilize the
same vulnerability as in step 2 or a different vulnerability to hijack
a program’s control flow at step 6 to redirect the flow to the stored
payload. The target of a payload is to achieve an attack goal, e.g.,
memory leak or launching a malicious application/root shell.

It is desirable for attackers to obtain attack chains that have
minimal side effects, i.e., having a payload that fulfills attack goals
without generating any unnecessary computation. However, this
property may not be guaranteed if the gadget availability is limited
by code randomization. We refer to the side effect of gadgets as
footprints. We defined the minimum footprint gadget and extended
footprint gadget in Section 2.

For ROP attacks (e.g., [15]) that bypass control-flow integrity
(CFI) defenses, the attackers also need to prepare specialized pay-
loads in addition to the previous tasks. For example, the Flashing
(FS) and Terminal (TM) gadgets in Table 5 in the Appendix were
designed by Carlini and Wagner [15] to bypass specific CFI imple-
mentations (namely, kBouncer [76] and ROPecker [23]).

4 Measurement Methodologies
We describe our measurement methodologies for evaluating fine-
grained ASLR’s impact on the memory layout derandomization,
system access, and payload generation of JIT-ROP. One major chal-
lenge is how to quantify the impact of fine-grained code random-
ization or re-randomization. Our approach is to count the number
of gadgets that are available to attackers under the JIT-ROP code
harvest mechanism. Other challenges are how to quantify i) the
difficulty of accessing internal system functions and ii) the quality
of gadget chains. For the former, our approach is to measure the
number of system gadgets and count libc pointers in a stack or heap
or data-segment of an application. In order to quantify the quality
of gadget chains, we design a register-level measurement heuristic
to compute the register corruption rate.

4.1 Methodology for Derandomization
Gadget selection. We manually extracted 21 types of gadgets from
various attacks [8, 14, 15, 45, 91]. These gadget types include load
memory (LM), store memory (SM), load register (LR), move regis-
ter (MR), arithmetic (AM), arithmetic load (AM-LD), arithmetic store
(AM-ST), LOGIC, jump (JMP), call (CALL), system call (SYS), and stack
pivoting (SP) gadgets. In addition to these, the gadget types also
include some attack-specific gadgets such as call preceding (CP),
reflect (RF), call site (CS2) and entry point (EP) gadgets. Table 5 in
the Appendix shows those gadget types in more details.

These 21 types of gadgets include the Turing-complete gadget set
(see Definition 1). These gadgets also include the priority and MOV
TC gadget sets (Table 6 in the Appendix). The Turing-complete,
priority, and MOV TC gadget sets with some attack-specific gadgets
(e.g., CP, RF, CS2, and EP) are appropriate for our evaluation because
we can precisely identify those gadgets. Some attack specific gad-
gets such as CS1, FS, etc. are very application-specific and do not
have concrete forms or attack goals. These gadgets are used to trick
defense mechanisms. We leave these gadgets out of our evalua-
tion. We also include gadgets from three real-world ROP payloads
from Metasploit [30, 31] and Exploit-Database [13]. We discuss the

evaluation of the block-oriented gadgets used for Block-Oriented
Programming (BOP) [56].
Methodology for single-round randomization experiments.
In our experiments, wemeasure the occurrences of gadgets from the
Turing-complete gadget set under fine-grained code randomization
schemes. To enforce the code randomization schemes, we used four
relatively new code randomization tools: Zipr [50] (instruction-level
randomization), SR [25] (function-level randomization), CCR [59]
(block-level randomization), andMCR [53] (function + register-level
randomization), because of their reliability. Table 7 in Appendix
shows the key differences between these schemes. We compile and
build a coarse- and a fine-grained version of each application or
dynamic library for each run using each of the four randomization
tools, i.e., each run has a different randomized code. We use LLVM
Clang version 3.9.0, version 3.8.0 and GCC version 5.4.0 as the
compilers for CCR, MCR and SR, respectively. We run, load or
rewrite each application or library 100 times to reduce the impact
of variability on the number of gadgets in each run or load.

We use ropper [83], an offline gadget finder tool, under coarse-
grained ASLR. Under fine-grained ASLR, we write a tool to recreate
the JIT-ROP [91] exploitation process, including code page discov-
ery and gadget mining. Our tool can search for gadgets of a specific
type. We scan the opcodes of ret (0xC3) and ret xxx (0xC2) and
perform a narrow-scoped backward disassembly from those loca-
tions to collect ROP gadgets. Similarly, we scan the opcodes of int
0x80 (0xCD 0x80), syscall (0x0F 0x05), sysenter (0x0F 0x34) and call
gs:[10] (0x65 xFF 0x15 0x10 0x00 0x00 0x00) for system gadgets.
We consider the gadgets only from the legitimate instructions, not
from instructions within overlapping instruction bytes.
Methodology for re-randomization experiments. For code re-
randomization schemes, we attempted to use six re-randomization
tools. However, some of the tools are unavailable and some have
runtime and compile-time issues6; in the end, we were able to ob-
tain only Shuffler [105]. To evaluate the impact of re-randomization,
we take 100 consecutive address space snapshots from an applica-
tion/library re-randomized by Shuffler [105]. Then, we manually
analyze the address space snapshots.

The choice of re-randomization intervals is important for a
re-randomization scheme. An effective re-randomization interval
should hinder attackers’ capabilities while ensuring performance
guarantees. Our measurement methodology determines the up-
per bound (see definition 2) of effective re-randomization intervals
by considering the fastest speed of gadget convergence, i.e., the
minimum time for convergence. To measure the time of gadget
convergence, we run the recursive code harvest process for an
application and record the times it takes to converge to different
gadget sets such as Turing-complete, priority, MOV TC, and pay-
load gadget sets. We record the number of leaked gadget types
that the code harvest process covered so far, while recording the
convergence time. The code harvest terminates upon gadget con-
vergence. We record multiple convergence times by starting the
code harvesting process from multiple pointer locations to capture
the variability. To select multiple starting pointers, we choose a

6Remix [21] & CodeArmor [19] are not available. TASR [6] is not accessible for policy is-
sues. Runtime ASLR [66] & Stabilizer [29] have run & compile time issues, respectively.

5

random code pointer from each code page of an application. Choos-
ing a single random code pointer from each code page allows us to
identify all instructions and pointers on that code page.

4.2 Methodology for System Access
Wemeasure the difficulty of accessing privileged operations through
the availability of system gadgets and vulnerable library pointers
in a stack, heap or data segment. For system gadgets, we compare
the number of system gadgets under the coarse- and fine-grained
randomization and compute the reduction in the gadget quantity.
For the measurement of vulnerable pointers in a stack/heap/data-
segment, we examine the overall risk associatedwith a stack/heap/data-
segment by identifying the number of unique libc pointers in that
stack/heap/data-segment. For the evaluation purpose, we do not
exploit vulnerabilities to leak libc pointers from the stack/heap/data-
segment. Rather, we assume that we know the address mapping of
libc and can find the libc pointers through a linear scanning of the
stack/heap/data-segment. We discuss the existence of libc pointers
in popular applications in Section 5.6.

4.3 Methodology for Payload Generation
We focus on measuring the quality of individual gadgets to approx-
imate the quality of a gadget chain. The quality of a set of gadgets
for generating payloads is essential, as attackers need to use gad-
gets to set up and prepare register states. To measure the quality of
individual gadgets, we perform a register corruption analysis for
each gadget, which is briefly described next. The detail description
of our register corruption analysis is in Appendix A.1.

Typically, a gadget contains one core instruction that serves the
purpose of that gadget. For example, an MR gadget may contain
mov eax, edx as the core instruction and some additional instruc-
tions before/after the core instruction. We measure the register
corruption rate by analyzing how the core instruction of a gadget
can get modified by those additional instructions. In the case of
multiple core instructions of a gadget type, we consider the core
instruction that is closest to the ret instruction. A core instruction
may be modified by i) the instruction(s) before the core instruction,
ii) the instruction(s) after the core instruction, and iii) both the
instruction(s) before/after the core instruction. For each gadget, we
consider these three scenarios and determine whether the gadget
is corrupted or not. Next, we discuss the code randomization and
re-randomization tools briefly in the following paragraphs.

Shuffler [105] runs itself alongside the user space program that
it aims to protect. It has a separate asynchronous thread that con-
tinuously permutes all the functions to make any memory leaks
unusable as fast as possible.

Zipr [50] reorders the location of each instruction in an exe-
cutable or library (an example in Figure 9 in the Appendix). Zipr
works directly on binaries or libraries with no compiler supports.
Zipr [50] is based on the Intermediate Representation Database
(IRDB) code. Zipr shuffles code during the rewriting process, which
is called block-level instruction layout randomization.

Selfrando (SR) [25] is compiler-agnostic and applies code diversi-
fication at the load time using function boundary-metadata called
Translation and Protection (TRaP) and inserting a dynamic library
called libselfrando. At the load time, libselfrando takes control of the
execution, reorders the position of each function in an executable

utilizing the TRaP information, and relinquishes the control to the
original entry point of the executable.

Multicompiler (MCR) [27, 53] applies the code diversification at
the link time. This tool randomizes functions, machine registers,
stack-layout, global symbols, VTable, PLT entries, and contents of
the data section. The tool also supports insertion of NOP, global
padding, and padding between stack frames.We choose the function
and machine register level randomization for our evaluation. MCR
uses the clang-3.8 LLVM compiler as its compilation engine.

Compiler-Assisted Code Randomization (CCR) [59] applies the
code diversification at the installation time, i.e., rewrites an exe-
cutable binary after reordering the functions and basic blocks of
the executable. This tool collects metadata for code layout, block
boundaries (i.e., the basic block, functional block, and object block
boundaries), fixup, and jump table of an executable during compi-
lation and linking phases. A Python script rewrites the executable
binary utilizing the collected metadata. In our experiments, CCR
uses the clang-3.9 LLVM compiler as its compilation engine.

Availability and robustness of fine-grained ASLR tools. We found
that the majority of code diversification implementations, including
ASR [43], ASLP [58], Remix [21], and STIR [103], are not publicly
available. Some available tools (e.g., MCR [27, 53], CCR [59] and
SR [25]) operate on the source code level that requires recompila-
tion. We experienced multiple linking issues while using CCR and
SR to compile Glibc code. The tool authors confirmed the limita-
tions (discussed in Section 6). ORP [77] was the randomization tool
used in Snow et al.’s JIT-ROP demonstration [91]. It operates on
Windows binaries, incompatible with our setup.

5 Evaluation Results and Insights
Experimental setup.We implemented a JIT-ROP native code mod-
ule. All experiments are performed on a Linuxmachinewith Ubuntu
16.04 LTS 64-bit operating system.Wewrite Python and bash scripts
for automating our analysis and measurement process. We will pub-
lish our JIT-ROP native implementation, analysis tool and data.

We perform our experiments on the latest and stable versions of
applications including bzip2, cherokee, hiawatha, httpd, lighttpd,
mupdf, nginx, openssl, proftpd, sqlite, openssh, thttpd, xpdf, and
mupdf, browsers including firefox, chromium7, tor, midori, netsurf,
and rekonq and browser engines such as webkit. We also perform
our experiments on dynamic libraries. Dynamic libraries include
libcrypto, libgmp, libhogweed, libxcb, libpcre, libgcrypt, libgnutls,
libgpg-error, libtasn1, libz, libnettle, libopenjp2, libopenlibm, libpng16,
libtomcrypt, libunistring, libxml2, libmozgtk, libmozsandbox, libxul,
libmozsqlite3, liblgpllibs, libwebkit2gtk-3.0, andmusl. We select these
applications or dynamic libraries by considering the fact that many
attackers demonstrate their attacks on most of these applications or
libraries. Besides, these applications/libraries include a diverse set
of areas such as the web server, browser, PDF reader, networking,
database, and libraries in cryptography, math, image, and system.

7Due to the incompatibility of the LLVM compiler version and the use of custom
linkers with custom linking flags, we are unable to randomize the Chromium browser
using SR, CCR, and MCR. Zipr also fails to randomize chromium possibly due to the
large size of the executable (∼944MB). However, we include a non-randomized version
of the chromium browser in our re-randomization experiments.

6

Table 1: Numbers of the applications and dynamic libraries
for experiments.

Experiment Applications (20 Total) Libraries (25 Total)
Re-randomization interval 17 15
Instruction-level rand. 15 14
Function-level rand. 17 21
Function + register-level rand. 12 13
Basic block-level rand. 15 15

Table 1 shows the numbers of applications/libraries used for mea-
suring the upper bound for re-randomization intervals and evaluat-
ing instruction-level [50], functional-level [25], function+register-
level [27, 53], and basic block-level [59] randomizations. Each exper-
iment evaluates a different set of applications and libraries because
no (re-)randomization tool is capable of (re-)randomizing all of our
selected applications (20 in total) and libraries (25 in total). How-
ever, we also conduct our experiments and report results using the
common set of applications and libraries.

Wemeasure a total of 11 types of gadgets for the Turing-complete
set, 10 types for the priority set, and 7 types for the MOV TC set.
Different payloads have different types and numbers of gadgets.

5.1 Re-randomization Upper Bound
We determine the upper bound of re-randomization intervals by
measuring the fastest speed of gadget convergence across the
Turing-complete, priority, MOV TC, and payload gadget sets, i.e.,
measuring the minimum time that an attacker needs to collect all
gadget types from any of the four gadget sets. Table 2 shows the
minimum (i.e., fastest speed) and the average time to leak all gadget
types in a set. The minimum and the average time is calculated
over 17 applications/browsers. From the table, we notice that the
re-randomization upper bounds, i.e., the minimum time, range from
1.5 to 3.5 seconds. We observe some variability (σ = 0.8) in the
minimum time with the priority and MOV TC gadget sets having
the lowest (1.5s) and highest (3.5s) time, respectively. Intuitively, the
reason for this variability could be related to the number of gadget
types necessary for each gadget set. However, we observe that the
minimum time for the MOV TC gadget set is larger than the TC or
priority gadget set even though theMOVTC has fewer gadget types.
To understand more about this variability, we analyze how gadget
types are leaked over time for individual applications/browsers
across the four types of gadget sets.

Table 2: Minimum and average time to leak all gadget types
from TC, priority, MOV TC, and payload gadget sets. The
percentage (%) of time is spent for leaking gadgets versus
analyzing gadgets. The minimum, average, and percentages
for each set are calculated using 17 applications/browsers.
Payload* −→ average of three payload sets.

Time to leak all gadget types Gadget analysis
Gadget set Minimum (s) Average (s) Leak (%) Analysis (%)

TC 2.2 4.3 17 83
Priority 1.5 3.5 13 87
MOV TC 3.5 5.3 16 84
Payload* 2.1 4.8 12 88
Average 2.3s 4.5s 14.5% 85.5%

Figure 3 shows the minimum time to obtain the Turing-complete
gadget set from individual application/browser along with a time-
line for new gadget type leaks. Each gray mark with a number n
on top of it represents the time to leak n gadget types. The bold
mark represents the time to leak 11 gadget types from the Turing-
complete gadget set. For example, it takes roughly 1 and 4.3 seconds
to leak 6 and 11 gadget types, respectively from cherokee.

The number of leaks increases as time increases. However, the
effect of the increasemay not be immediate. For example, in Figure 3,
the code harvest process takes roughly 0.7 seconds to leak 8 distinct
gadget types from netsurf. If the time increases to 1 or 2 seconds,
the number of leaked gadgets is still the same, i.e., 8 distinct gadget
types. However, if the time is more than 3 seconds, the number of
leaked gadgets starts to increase. We call the time between 0.7 to 3
seconds as non-reactive.

Figure 3: Minimum time to obtain the Turing-complete gad-
get set with a timeline for new gadget type leaks. Each gray
filled circle () with a number n on top of it represents the
time to leakn gadget types. The bold filled circle () indicates
the time to leak all gadget types. Applications and browsers
are randomized with a function-level scheme [25].

We observe a number of long non-reactive times for some other
applications such as chromium (0.89–3.44s), hiawatha (1.7–3.6s),
mupdf (0.18–1.52s and 1.6–2.88s), openssh (0.08–1.61s), proftpd
(0.74–2.37s), and xpdf (1.19–2.14s). Most of these non-reactive times
are towards the end of their timelines. These non-reactive times
indicate that a few missing gadget types prevent the discovered
set from being Turing-complete quickly. That is, a few types of
gadgets are very scarce. The scarcest gadgets are Load-Memory
(LM), Arithmetic-Load (AM-LD), and System Call (SYS) gadgets.
The fundamental reason for the scarcity is that some applications
(including libraries) have a few register-based memory accesses.
Besides, the main executable of an application does not have SYS
gadgets in most cases.

We also observe similar non-reactive times for obtaining the
priority and MOV TC gadget sets. The variability in the minimum
time of the four gadget sets is due to the Arithmetic-Load (AM-LD)
gadget type. Since the priority gadget set does not include AM-LD,
its code page harvest process is the fastest. The time for the MOV

7

Table 3: Impact of locations of pointer leaks on gadget availability. The same application has different numbers of leaked
addresses for different tools because each tool uses a different backend (i.e., compiler). Different backends produce different
sized executables of the same program. Size of an executable is proportional to the number of code pages. Also, the numbers
of gadgets from the Function-level scheme [25] and Function + register-level scheme [27, 53] are not comparable due to their
different backends.

Instruction-level scheme [50] Function-level scheme [25] Function + register-level scheme [27, 53] Block-level scheme [59]

Program
of leaked
addresses

of
MIN-FP

of
EX-FP

of leaked
addresses

of
MIN-FP

of
EX-FP

of leaked
addresses

of
MIN-FP

of
EX-FP

of leaked
addresses

of
MIN-FP

of
EX-FP

hiawatha 41 9 223 42 41 1259 47 44 1042 39 31 793
httpd 91 16 634 91 141 4453 MCR produces linking error for httpd 86 176 4764
lighttpd 53 8 235 53 103 2512 68 118 2544 45 74 1783
nginx 114 26 788 121 222 5277 49 111 1731 114 204 4822
proftpd 131 17 523 187 96 7395 131 115 4466 131 125 3986
thttpd 10 8 172 17 22 583 16 31 535 15 24 428

TC gadget set is relatively longer than the TC and priority gadget
set, even though MOV TC does not include AM-LD. The reason for
this long time is that the MOV TC set includes several specialized
Load-Memory (LM) and Store-Memory (ST) gadget types.

The MOV TC gadget set is powerful since it takes only a fewmov
instructions with four register pairs to perform the Turing-complete
operations. To observe to what extent MOV TC gadgets are preva-
lent in applications, we count the numbers of six MOV gadgets
(MR, ST, STCONSTEX, STCONST, LM, and LMEX described Table 6 in
the Appendix) and the System Call (SYS) gadget while measuring
the minimum time to find these gadgets. STCONSTEX, STCONST, and
LMEX gadgets are variants of ST and LM gadgets. The average num-
ber of gadgets for MR is 51, ST is 14, STCONSTEX is 35, STCONST is 2,
LM is 3, and LMEX is 15. As expected, the number of Load-Memory
(LM) gadgets is low, which indicates the scarcity of this gadgets. Be-
sides, we observe the number of Store-Constant (STCONST) is also
low, which is necessary for performing comparison and conditional
operations. The average number of (SYS) gadgets is adequate (23).

Our re-randomization upper bound calculation includes the over-
head of analyzing different gadget types. Thus, we perform addi-
tional analyses to investigate how fast the address space is leaked
and how much time is spent on gadget analysis. According to our
findings (Table 2), we find that on average around 15% of the time is
spent on leaking address space, while the rest for gadget searching.
This result indicates that a JIT-ROP attacker spends a significant
amount of time searching for gadget types. Thus, the upper bound
of re-randomization intervals is subject to change based upon an
optimized gadget search strategy.

Clearly, the value of the upper bound for the re-randomization in-
tervals also depends on the machine (e.g., CPUs, cache size, memory,
etc.) where the measurement is conducted. Using our methodol-
ogy, defenders can perform the measurement on their machines
to determine what intervals are appropriate for their applications,
while satisfying overhead constraints. In Section 6, we discuss the
implications of re-randomization intervals in real-world operations.

We call the upper bound of re-randomization intervals as the
“best-case” re-randomization interval from a defender’s perspective
because the defender has to rerandomize by the time of the interval,
if not sooner. This raises the question regarding the effectiveness of
“best-case” intervals over “worst-case” intervals. The “worst-case”
interval indicates the time required to build a useful gadget chain
using a minimal set of gadgets. In reality, attackers’ goals vary. It
is difficult to determine a minimum set of gadgets common and

necessary across all attack chains. Our “best-case” interval includes
the time for discovering SYS gadgets that are scarce. Some attack
scenarios may not require the SYS gadgets, but the necessity of
SYS gadgets or system APIs in attack chains have been shown by
previous work [8, 10, 15, 32, 91].

5.2 Impact of the Location of Pointer Leakage
We measure the impact of pointer locations on JIT-ROP attack
capabilities, by comparing the number of gadgets harvested and
the time of harvest under different starting pointer locations. We
aim to find out whether or not the number of gadgets and the time
depends on the location of a pointer leakage when a fine-grained
randomization scheme is applied.
Impact of pointer locations on gadget availability. Tomeasure
the impact of pointer locations on gadget availability, we collect
the number of minimum and extended footprint gadgets by leaking
a random code pointer from each code page of hiawatha, httpd,
lighttpd, nginx, proftpd, and thttpd and starting the code harvesting
process from that leaked code pointer. Then we calculate the av-
erage number of gadgets for each leaked pointer. We leak a single
code pointer from a single code page randomly because choosing
any single random code pointer from a code page allows us to iden-
tify all instructions and all code pointers on that code page. Table 3
shows the number of leak code pointers or addresses and the num-
bers of minimum and extended footprint gadgets. We restrict the
code harvest process to harvest gadgets from the main executable
of an application to find how well the code of that application is
connected. We exclude the dynamic libraries for this experiment
because many applications use a common set of libraries and the
gadgets from this common set of libraries (if not excluded) would
dominate the total number of gadgets.

For all applications, we observe that the pointer’s location does
not have any impact on the total number of minimum and extended
footprint gadgets. For example, regardless of the location of starting
point in nginx, we observe 26 minimum and 788 extended gadgets
when randomized by the instruction-level randomization scheme;
222 minimum and 5277 extended footprint gadgets when random-
ized by the function-level scheme; 111 minimum and 1731 extended
footprint gadgets when randomized by function + register-level
scheme; and 204 minimum and 4822 extended footprint gadgets
when randomized by block-level scheme.These findings indicate
that an application’s code segment is very well-connected,
making JIT-ROP attacks easier.

8

The numbers of leaked addresses in Table 3 are different for
different randomization schemes because we use different tools to
enforce these randomization schemes. Different tools use different
backends and different backends optimize the same application
differently. This increases/decreases the number of code pages.
Since we leak a random address from each code page, the number
of leaked addresses varies with tools.

Impact of pointer locations on code harvest time. To mea-
sure the impact of code pointer locations on the time, we measure
the time required to leak all gadget types from the Turing-complete
gadget set. We run the code harvest process starting from a ran-
dom code pointer leaked from each code page of an application or
browser and record the time to collect all gadget types. Figure 4
shows the minimum, maximum, and average time to leak all gad-
gets for different applications and browsers. For a few code pointers
from several applications/browsers (e.g., 3 out of 111 code pointers
for nginx or 8 out of 40 code pointers for openssl or 2 out of 41 for
tor), the code harvest process takes significantly shorter time than
the average. We analyze the reason for this phenomenon.

Figure 4: Impact of starting pointer locations on gadget
harvesting time. Each indicates the time for harvesting
the Turing-complete gadget set. The minimum, maximum,
and average time is calculated by running code harvest pro-
cess from multiple starting code pointer locations. A small
amount of jitter has been added to x-axis for each applica-
tion/browser for better visibility of times along the y-axis.

We find that most applications/browsers have some code pages
that contain a diverse set of gadgets. For example, nginx contains
9 code pages that have at least 5 distinct gadget types from the
Turing-complete gadget set. Whenever the code harvest process
accesses those code pages sooner, the discovered gadgets quickly
converge to Turing-complete.
Future directions. Our findings imply that any valid code pointer
leak is equally viable with regards to the coverage of gadgets. This
observation reasserts that disrupting the code connectivity is an
effective defense strategy used in Oxymoron [5], Readactor [27],
XnR [4], NEAR [104], Heisenbyte [96], and ASLR-Guard [67] tools.
A large-scale quantitative assessment on the effectiveness of these
security tools is necessary to find out the practicality and feasibility
of these tools for deployment. Also, the design of risk heuristics-
based pointer selection and prioritization for protecting pointers
from leakage would be an interesting direction. The idea is to prior-
itize code pointers based on the convergence time and data pointers
based on their sensitivity (e.g., data pointers used in loops).

5.3 Impact on the Availability of Gadgets
Impact of Single-round Randomization Schemes. Table 4 sum-
marizes the impact of fine-grained code randomization schemes
on the availability of gadgets in various applications (i.e., the main
executables) and dynamic libraries. We measure the numbers of the
various gadgets (as mentioned in Section 4.1) for each application
and library before and after randomizing with the four fine-grained
randomization schemes. Each application or library is run/loaded in
memory for 100 times after randomizing 100 times when necessary8.
The numbers of gadgets are averaged over 100 runs/loads of an ap-
plication or library. Then the numbers of gadgets are averaged over
the number of applications and libraries for each randomization
scheme. Table 4 shows the overall gadget reductions in application
and library categories for each randomization scheme.

On average, the number of gadgets is reduced (by 18%–28% for
minimum footprint and 37%–45% for extended footprint gadgets)
when applications are randomized using function-, block-, and
function+register-level schemes. For dynamic libraries, the reduc-
tions range from around 21%–47% for minimum footprint gadgets
and around 37%–44% for extended footprint gadgets. However,
instruction-level randomization scheme reduces the overall gadget
amount significantly by around 80%–90% for both minimum and
extended footprint gadgets. Table 4 also shows the reduction of
gadgets in seven Turing-complete (TC) operations and indicates
whether the Turing-complete expressiveness is preserved after ap-
plying the code randomization. The numbers before and after a
vertical bar (|) indicate the reduction of minimum and extended foot-
print gadgets for a Turing-complete operation. Since the numbers
of applications/libraries are different for randomization schemes,
we also evaluate these schemes and validate the results (Figure 7
in the Appendix) with a common set of applications and libraries.
The results show a consistent reduction in all the schemes.

The Turing-complete expressiveness of ROP gadgets is preserved
in the randomized versions of applications or libraries when the
schemes are function, block, and function+register-level random-
izations. However, instruction-level randomization scheme [50]
does not retain the Turing-complete expressiveness for minimum
footprint gadgets. The Turing-complete expressiveness is hampered
when there is no gadget in one of the Turing-complete operations.
For example, in Table 4, the reduction of minimum footprint gadgets
in memory and arithmetic operations is almost 100% for applica-
tions. That means there is no gadget to do memory and arithmetic
operations, which are required for reliable attacks. The reductions
for libraries in the two categories (i.e., memory and arithmetic)
are 93.7% and 91.8%, respectively. For both application and library
cases, the reductions are not exactly 100%, because some applica-
tions/libraries contain a few gadgets. When the numbers of gadgets
are averaged over the number of applications/libraries, the average
is close to zero.

Most of the applications and libraries do not contain any syscall
gadgets (as expected), as applications and libraries usually make
syscalls through libc. This is why the number of syscall gadgets is
low (2-3) and one gadget loss leads to around 33% reduction. Since
SR is only able to randomize a light-weight version of libc (musl),

8One compilation with 100 runs, 100 times randomization, 100 times compilation, and
100 times rewriting are required for SR, CCR, MCR, and Zipr, respectively.

9

Table 4: Impact of fine-grained single-round randomization on the availability of gadgets in various applications and dynamic
libraries. Instruction-level randomization scheme [50] is applied on 15 applications and 14 dynamic libraries, function-level
scheme [25] on 17 applications and 21 dynamic libraries, function + register-level scheme [27, 53] on 12 applications and 13
dynamic libraries, and basic block-level scheme [59] on 15 applications and 15 dynamic libraries. The data of each application
or library is the average result of 100 runs/loads/rewrites. The standard deviations vary between 0.3∼3.4 forminimumfootprint
and 5.04∼22.85 for extended footprint gadgets. ⇓ indicates reduction.

Reduction (%) of Turing-complete (TC) gadgets in 7 TC operations (MIN-FP | EX-FP)

Randomization schemes Granularity
⇓ (%)
MIN-FP

⇓ (%)
EX-FP

Memory Assignment Arithmetic Logical
Control
Flow

Function
Call

System
Call

TC
Preserved?

Applications

Inst. level rando. [50] Inst. 79.7 82.5 97.4 | 82.7 58.8 | 81.7 95.9 | 64.9 85.8 | 85.4 49.4 | 80.1 67.4 | 83.9 83.3 | 0 ✗*
Func. level rando. [25] FB 27.63 36.55 0.8 | 29.2 10.6 | 43.5 19.3 | 15.1 35.1 | 35.9 21.1 | 29.1 18.2 | 46.9 0 | 0 ✓

Func.+Reg. level rando. [53] FB & Reg. 17.62 42.37 -8.3 | 35.0 -5.1 | 35.2 26.1 | 44.9 21.3 | 38.1 34.0 | 60.2 11.8 | 64.9 80.0 | 0 ✓

Block level rand. [59] BB 19.58 44.64 5.5 | 40.9 6.1 | 47 26.1 | 33.7 20.4 | 37.4 41.2 | 63.1 23.3 | 56.3 0.0 | 0 ✓

Libraries

Inst. level rando. [50] Inst. 81.3 92.2 93.7 | 96.1 60.7 | 93 91.8 | 84.9 84.5 | 90.4 59.8 | 93.5 51.8 | 92.9 66.7 | 0 ✗*
Func. level rando. [25] FB 46.5 43.8 24.2 | 71.1 15.9 | 31 41.2 | 65.4 56.9 | 25 34.5 | 78.7 23 | 75.8 3.5 | 14.5 ✓

Func.+Reg. level rando. [53] FB & Reg. 44.2 43.9 35.5 | 44.8 35.3 | 43.4 63.2 | 61.8 44.8 | 49.0 36.4 | 52.1 43.1 | 35.3 66.7 | 0 ✓

Block level rand. [59] BB 20.98 37.0 7.3 | 36.3 8.1 | 32.1 13.9 | 55.9 24.8 | 31.6 22.2 | 52.1 18.1 | 44.6 50.0 | 0 ✓

* For instruction-level randomization scheme [50], TC is not preserved for minimum footprint gadgets, but TC is preserved for extended footprint gadgets.

we observe slightly high values (84) and low reduction for system
gadgets in Table 4 for the function-level scheme.

We also assess the gadget availability under a single randomiza-
tion pass of Shuffler [105]. We take 100 consecutive address space
snapshots from nginx after each re-randomization with an inter-
val of 30 seconds and manually find gadgets from the snapshots.
On average, we observe a 24% and 3% reduction in gadget avail-
ability for minimum and extended footprint gadgets compared to
a non-randomized version of nginx, respectively. The low reduc-
tions are expected, as Shuffler’s security relies on the capability of
continuously shuffling code locations, not a single randomization
pass.

Ideally, function-level randomization does not break gadgets,
only shifts the gadgets from one location to another. Basic-block or
machine-register-level randomization may break some gadgets due
to the memory layout perturbation and register allocation random-
ization. It is not surprising that the function, block or register-level
randomization schemes have low gadget reduction. On the other
hand, instruction-level randomization perturbs the memory layout
significantly. That is why we observe a large reduction in gadget
availability by Zipr.
Future directions. Redefining traditional ROP gadgets into smaller
(e.g., one line) building blocks and demonstrating new gadget chain
compilers (e.g., two-level construction) by tackling the instruction-
level perturbations are interesting new attack directions.

5.4 Impact on Performance Overhead
Wemeasure the performance overhead of the five (re-)randomization
tools to evaluate the overhead in our measurement environment.
To measure the performance overhead, we use 8 applications in
domains such as web servers, FTP servers, browsers, security pro-
tocols, and file compression tools. The applications are nginx, httpd,
proftpd, hiawatha, lighttpd, openssl, firefox, and bzip. Applications
are randomized using the five (re-)randomization tools.We use crite-
ria such as HTTP request latency, FTP upload speed, browser page-
load time, compression time, and effectiveness of cryptographic
algorithms to measure the performance overhead.

We measure HTTP request latency by running an HTTP bench-
mark using wrk [44] for 30 seconds to read an HTML page from
a server. The benchmark includes 12 threads and 400 HTTP open
connections. To measure FTP upload speed, we run a benchmark
using ftpbench [102]. The benchmark runs 10 concurrent operations
for 10 seconds. We use OpenSSL speed to test the performance of
aes-128-gcm, aes-256-gcm, aes-128-cbc, and aes-256-cbc algorithms.
We use the Linux time command to measure compression time. Fi-
nally, we use a website speed test tool [99] to measure a browser’s
page load time. For Shuffler, we measure the overhead for three
different re-randomization intervals: 10ms, 100ms, and 1s.

We run each measurement for five times and calculate the av-
erage for each application. Then, we average the overheads over
the 8 applications. For Shuffler, we observe 3% overhead with 1s
re-randomization interval, 5% for 100ms, and 12% for the 10ms
interval consistent with the reported result [105]. We observe 23%
overhead for Zipr, 10% for SR, 3% for CCR, and 10% for MCR which
are comparable to or higher than what’s reported. The reported
overheads for Zipr, SR, CCR, and MCR are around 5% [50], 1% [25],
0.28% [59], and 1% [53], respectively.

5.5 Impact on the Quality of a Gadget Chain
The purpose of this analysis is to estimate the quality of a gadget
chain. We measure the quality of a gadget through the register
corruption analysis for individual gadgets, following the procedure
described in Section 4.3. We measure the register corruption rate for
MV, LR, AM, LM, AM-LD, SM, AM-ST, SP, and CALL gadgets. Some gadgets
such as CP, RF, and EP (described in Table 5 in the Appendix) are
special purpose gadgets that are used to trick defense mechanisms,
such as CFI [1], kBouncer [76], and ropecker [23]. Thus, we omit
these gadgets from the quality analysis.

We found that the overall register corruption rate is slightly
higher (∼6%) in the presence of fine-grained randomization. This
slightly higher register corruption rate indicates that the formation
of gadget chain is slightly harder in fine-grained randomization
compare to the coarse-grained randomization.

10

We present the detailed results in Table 8 in the Appendix, in-
cluding the average number of unique registers used in each gadget.
We observe the number of unique registers used in each gadget
ranges from 1 to 4 in our register corruption measurement.

Sometimes, fine-grained randomization decreases the register
corruption rate. For example, for Nginx, the corruption rate of the
load memory (LM) gadgets is reduced from 44% to 15%, when fine-
grained randomization is in place. This reduction is likely due to
the relatively smaller number of gadgets in the presence of the
fine-grained randomization.
Future directions. Designing randomization solutions to increase
the register corruption rate in gadgets would be interesting as a
high register corruption rate would make attacks unreliable.

5.6 Availability of Libc Pointers
This experiment measures the risks associated with a heap, stack or
data segment of an application for revealing a library location. For
simplicity, we consider only the risk associated with revealing the
libc library w.r.t. the basic ROP attacks. We count the number of
unique libc pointers in a target application’s stack, heap, and data
segment when the application reaches a certain execution point.
The execution point is defined differently for different types of
applications. For example, the execution point for proftpd is when
proftpd is ready to accept connections. We assume that i) coarse-
grained randomization is enforced, and ii) adversaries are not able
to perform recursive code harvest to find gadgets. This experiment
targets a weak attack model where an adversary leaks a (known)
library pointer and adjusts pre-computed gadgets based on the
leaked pointer. We regard a library pointer (e.g., libc pointer) as
known if the pointer is loaded in the same location in the stack of
an application for multiple runs. A pointer in stack, heap or data
segment may point to a non-library function, which in turn points
to a library (e.g., libc).

Figure 5: Libc pointers in the stack, heap and data segment
of a program. Stacks containmore pointers, carrying higher
risks of pointer leakage.

Figure 5 shows the number of unique libc pointers in the stack,
heap, and data segment of 11 applications including web servers,
PDF reader, cryptography library, database, and browser. According
to the observations in Figure 5, heap or data-segment contains only
one libc code pointer (on average) while stack contains 17 libc code
pointers. This finding indicates that high risk is associated with
stack than heap or data segment. It also suggests that the safeguard

and randomization/re-randomization of stack is more important
than protecting/randomizing heap or global variables.
Future directions. Protecting a stack/heap/data-segment from leak-
ing data pointers that contain code pointers would be an interesting
research direction. A similar risk assessment for C++ binaries could
indicate the importance of protecting the read-only section that
includes many pointers to virtual methods.

6 Discussion

Metrics for evaluating fine-grained randomization. Tradition-
ally, both coarse- and fine-grained randomization solutions use
entropy to measure the effectiveness of hindering code-reuse at-
tacks [25, 59, 98, 103]. Randomization tools such as PaX ASLR [98],
SR [25], CCR [59], Remix [21], Binary stirring [103], ILR [52] and
ASLP [58] use the entropy values as the security metrics to evaluate
the security of their randomization schemes. Some tools such as
SR [25], CCR [59], Remix [21], and ASLP [58] calculate entropy as
a function of the number of function- or basic-blocks. That means
these tools permute the order of functions or basic blocks.

However, such an entropy measure is not useful under the JIT-
ROP threat model, as chunks of code are still available. Including
distances between permuted functions or basic blocks in the entropy
computation would not work either, because the code’s semantic
connectivity (e.g., through call and jmp) is still not captured. Code
connectivity is what JIT-ROP attacks leverage to discover code
pages. In comparison, our measurement methodology more accu-
rately reflects JIT-ROP capabilities and is more meaningful under
the JIT-ROPmodel. How to design an entropy-like metric to capture
the degree of code isolation or the semantic connectivity in code
is an interesting open problem.
Availability of Block-Oriented Programming (BOP) gadgets.
We measure the numbers of BOP functional blocks for register
assignments/modifications, memory reads/writes, system/library
calls, and conditional jumps using the BOP compiler (BOPC) [56].
We observed almost no change in the numbers of BOP functional
blocks in randomized versions compared to the non-randomized
versions for CCR [59] and MCR [27, 53]. As BOPC operates on
static binary, we could not use Shuffler [105] and SR [25] because
they randomize a memory layout at runtime. BOPC does not seem
to run on binaries produced by Zipr [50].
Impact of the compiler optimizations on gadget availability.
We assess the impact of code transformations and optimizations
(-O0, -O1, -O2, -O3, -Ofast, -Os) on the availability of gadgets. We
compare the unoptimized and optimized versions of nginx, apache,
proftpd, openssh, and sqlite3 to assess the impact. We find that the
unoptimized code contains a smaller number of LM, SM, and MR
gadgets than optimized code (Figure 8 in the Appendix). The main
reason is due to the tendency of mov and ret instructions staying
together in optimized code, but not in unoptimized code. Besides,
compilers sometimes emit extra instructions for optimizations that
increase gadgets.
Reachability of gadgets. We design our experiments based on
the availability of various kinds of gadgets. However, in reality, it
is not an easy task to invoke the available gadgets. Attackers need
to conduct a series of operations including finding a vulnerability

11

or leaking memory for the actual invocations of gadgets. In Sec-
tion 2, we assume that an attacker has already overcome the initial
obstacles, especially finding a memory leak. Our experiments are
focused on the available gadgets utilizing the leaked memory to
compare various code (re-)randomization techniques.
Operational re-randomization intervals. Ourmethodology helps
guide software owners (e.g., server owners) to set the appropriate
re-randomization intervals. For example, if the owners prioritize
performance over security, they can set an interval just below TA

P
(Definition 2). If the owners prioritize security over performance,
they can set an interval much shorter than TA

P .
Need for randomizing Glibc. Unfortunately, SR, CCR, MCR, and
Zipr were all unable to completely randomize the Glibc implemen-
tation. For CCR and MCR, the LLVM Clang compiler (which CCR
and MCR use as their compilers) does not have the support for
certain GCC specific extensions (e.g., ASM GOTO) in Glibc. SR
also cannot randomize some parts of Glibc. Therefore, we evaluate
a lightweight version of the standard C library musl-libc [63])
instead of Glibc. Only Selfrando works on musl-libc. Shuffler can
reorder Glibc code by making a few modifications such as disabling
manual jump table construction.
Limitations. Both CFI and XoM defenses are powerful and have
capabilities to prevent JIT-ROP attacks. These two defenses with
continuous re-randomization would be even more powerful. How-
ever, we did not enforce CFI and XoM in this work so that we could
isolate an individual defense’s security impact. In this work, we at-
tempt to address many important questions related to fine-grained
(re-)randomization not yet answered by the literature. We leave
the analysis and measurement of CFI and XoM as a future research
direction.

Our current work does not measure zombie gadgets [92] and
microgadgets [54]. The gadgets that are available after applying
destructive read defenses (e.g., XnR [4], NEAR [104], Readactor [27],
and Heisenbyte [96]) are called zombie gadgets [92]. Destructive
read defenses only allow code execution, no read after execution.
In this way, destructive reads destroy the availability of gadgets to
attackers. However, destructive read defenses cannot eliminate all
gadgets. In our future work, we plan to assess the availability of
zombie and micro gadgets after applying destructive read defenses.

Another limitation is that our threat model assumes that code
pointer obfuscation-based defense is not deployed. If used, code
pointer obfuscation (e.g., CPI [61, 62], Oxymoron [5]) could make
JIT-ROP code page discovery less effective, reducing the gadget
availability. Understanding how code pointer obfuscation impacts
JIT-ROP and measuring the effectiveness of these defenses under
various attack conditions (e.g., Isomeron [32] and COOP [84]) are
interesting problems.

One limitation of the time-based re-randomization schemes is
that the time needs recalculation with the evolution of hardware
or a program itself. Event-based re-randomization schemes can
be effective in this case. However, event-based schemes may trig-
ger unnecessary re-randomization if events are frequent, e.g., re-
randomizing every time a program outputs [6].

Key Takeaways
❶ Effective re-randomization upper bound. Our methodology for
measuring various gadget sets systematically by considering the

gadget convergence time helps compute the effective upper bound
for re-randomization intervals of a re-randomization scheme. Our
results show that this upper bound ranges from around 1.5 to 3.5
seconds. Applying our methodology on their machines will help
re-randomization adopters to make more informed configuration
decisions.
❷ All leaked pointers are created equal for gadget convergence, but
not for the speed of gadget convergence. Regardless of the location
of pointer leakage, we obtain the same number of minimum and
extended footprint gadgets via JIT-ROP. This observation indicates
that any pointer leak from an application’s code segment is equally
useful for attackers. However, the time for obtaining the gadgets
varies for different leaked pointers.
❸ Turing-complete operations. Function, basic-block, or machine reg-
ister level fine-grained randomization preserves Turing-complete
expressive power of ROP gadgets, however, instruction-level ran-
domization does not.
❹ Connectivity. Code connectivity is the main enabler of JIT-ROP.
As the conventional entropy metric does not capture code connec-
tivity, it should not be used to measure ASLR security under the
JIT-ROP threat model.
❺ Gadget quality. Our findings suggest that current fine-grained
randomizations do not impose significant gadget corruption.

7 Related Work
The research conducted in the system security area primarily has
two themes: 1) demonstrating attacks and 2) discovering counter-
measures. Attack demonstrations range from stack smashing [75],
return-to-libc [60, 79, 106], to ROP [15, 17, 57], JOP [10], DOP [55],
ASLR bypasses [8, 32, 40, 47, 55, 91], and CFI bypasses [7, 14, 15, 45,
56].

Researchers have also proposed a range of defenses for ROP
attacks [1, 9, 18, 23, 27, 28, 33, 34, 36, 39, 46, 72, 74, 76–78, 85, 100,
107, 108], CFI bypass [107], and ASLR bypass [4–6, 21, 27, 32, 43, 52,
58, 59, 67, 68, 77, 96, 103–105]. A categorical representation of these
defenses is given in our attack-path diagram (Figure 10 in the Ap-
pendix). Binary analysis tools are also available to understand [90]
and mitigate [101] these ROP or code-reuse attacks.

Most of the above-mentioned defenses are variants of W⊕X
(e.g., NEAR [104] and Heisenbyte [96]), memory safety (e.g., Hard-
Scope [73], Memcheck [71], AddressSanitizer [87], and StackAr-
mor [20]), ASLR (e.g., fine-grained randomization [6, 21, 59, 86, 103,
105]), and CFI (e.g., CCFIR [107] and bin-CFI [108]). These defenses
are capable of preventing most code-reuse attacks [8, 32, 40, 91] ex-
cept a few cases such as inference attacks that are performed using
zombie gadgets [92] or relative address space layout [48, 82]. The
latest advancement in control-flow transfers such as MLTA [65]
significantly advances CFI that can prevent most control-oriented
attacks. Recent attention on non-control-oriented or data-only at-
tacks [55, 56] motivated researchers to develop practical Data-Flow-
Integrity (DFI) [16] solutions (details of non-control attacks in [22]).
Currently, it is challenging to implement a practical DFI solution
considering the overhead of data-flow tracking.

From the defense-in-depth perspective, it is desirable to have
some degree of redundancy (e.g., CFI and ASLR) in system pro-
tection. A single deployed defense may be compromised due to

12

unknown implementation flaws or configuration issues. Thus, in-
vestigations in multiple directions [12, 54, 89, 100] is necessary for
gauging the feasibility of existing defenses. Our work investigates
various aspects of ASLR – including timing – by evaluating secu-
rity metrics such as various gadget sets, interval choices, and code
pointer leakages. We also assess how security tools in the ASLR
domain impact on these security metrics, quantitatively.

8 Conclusions
We presented multiple general methodologies for quantitatively
measuring the ASLR security under the JIT-ROP threat model and
conducted a comprehensive measurement study. One method is for
computing the number of various types of gadgets and their qual-
ity. Another method is for experimentally determining the upper
bound of re-randomization intervals. The upper bound helps guide
re-randomization adopters to make more informed configuration
decisions.

Acknowledgment
We thank our shepherd, Georgios Portokalidis, for his support and
valuable feedback for this work. We also thank the anonymous
reviewers for their valuable comments and suggestions.

References
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-

flow integrity. In Proceedings of the 12th ACM conference on Computer and
communications security. ACM, 340–353.

[2] Patroklos Argyroudis and Chariton Karamitas. 2012. Exploiting the jemalloc
memory allocator: Owning Firefox’s heap. Blackhat USA (2012).

[3] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Georgios
Portokalidis, and Sotiris Ioannidis. 2015. The Devil is in the Constants: Bypassing
Defenses in Browser JIT Engines. In NDSS.

[4] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-
berger, and Jannik Pewny. 2014. You can run but you can’t read: Preventing
disclosure exploits in executable code. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1342–1353.

[5] Michael Backes and Stefan Nürnberger. 2014. Oxymoron: Making Fine-Grained
Memory Randomization Practical by Allowing Code Sharing. InUSENIX Security
Symposium. 433–447.

[6] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 268–279.

[7] Andrea Biondo, Mauro Conti, and Daniele Lain. 2018. Back To The Epilogue:
Evading Control Flow Guard via Unaligned Targets. NDSS.

[8] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
2014. Hacking blind. In 2014 IEEE Symposium on Security and Privacy. IEEE,
227–242.

[9] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. 2011. Mitigating code-reuse
attacks with control-flow locking. In Proceedings of the 27th Annual Computer
Security Applications Conference. ACM, 353–362.

[10] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
oriented programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security.
ACM, 30–40.

[11] Michael D. Brown and Santosh Pande. 2019. Is less really more? Towards
better metrics for measuring security improvements realized through software
debloating. In 12th USENIX Workshop on Cyber Security Experimentation and
Test (CSET 19).

[12] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-flow integrity: Precision, security,
and performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 16.

[13] Exploit Database by Offensive Security. 2012. HT Editor 2.0.20 - Local Buffer
Overflow (ROP). https://www.exploit-db.com/exploits/22683. Last accessed 05
May 2020.

[14] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity. In USENIX Security Symposium. 161–176.

[15] Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In USENIX Security Symposium. 385–399.

[16] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by
enforcing data-flow integrity. In Proceedings of the 7th symposium on Operating
systems design and implementation. USENIX Association, 147–160.

[17] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 559–572.

[18] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. 2009.
DROP: Detecting return-oriented programming malicious code. In International
Conference on Information Systems Security. Springer, 163–177.

[19] Xi Chen, Herbert Bos, and Cristiano Giuffrida. 2017. CodeArmor: Virtualizing
the code space to counter disclosure attacks. In 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 514–529.

[20] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida.
2015. StackArmor: Comprehensive Protection From Stack-based Memory Error
Vulnerabilities for Binaries. In NDSS.

[21] Yue Chen, Zhi Wang, David Whalley, and Long Lu. 2016. Remix: On-demand
live randomization. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy. ACM, 50–61.

[22] Long Cheng, Hans Liljestrand, Thomas Nyman, Yu Tsung Lee, Danfeng Yao,
Trent Jaeger, and N. Asokan. 2019. Exploitation Techniques and Defenses for
Data-Oriented Attacks. arXiv preprint arXiv:1902.08359 (2019).

[23] Yueqiang Cheng, Zongwei Zhou, Yu Miao, Xuhua Ding, and Robert H. Deng.
2014. ROPecker: A generic and practical approach for defending against ROP
attack. In NDSS.

[24] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing control: On the effectiveness of control-flow integrity under stack
attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 952–963.

[25] Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Kop-
pen, Per Larsen, Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi.
2016. Selfrando: Securing the tor browser against de-anonymization exploits.
Proceedings on Privacy Enhancing Technologies 2016, 4 (2016), 454–469.

[26] Stanley Crispin Cowan, Seth Richard Arnold, Steven Michael Beattie, and
Perry Michael Wagle. 2010. Pointguard: method and system for protecting
programs against pointer corruption attacks. US Patent 7,752,459.

[27] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readac-
tor: Practical code randomization resilient to memory disclosure. In 2015 IEEE
Symposium on Security and Privacy. IEEE, 763–780.

[28] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete
control-flow integrity for commodity operating system kernels. In 2014 IEEE
Symposium on Security and Privacy. IEEE, 292–307.

[29] Charlie Curtsinger and Emery D. Berger. 2013. Stabilizer: Statistically sound
performance evaluation. ACM SIGARCH Computer Architecture News 41, 1
(2013), 219–228.

[30] Rapid7 Vulnerability & Exploit Database. 2018. Firebird Relational Database
CNCT Group Number Buffer Overflow. https://www.rapid7.com/db/modules/
exploit/windows/misc/fb_cnct_group. Last accessed 05 May 2020.

[31] Rapid7 Vulnerability & Exploit Database. 2018. ProFTPD 1.3.2rc3 - 1.3.3b Telnet
IAC Buffer Overflow (Linux). https://www.rapid7.com/db/modules/exploit/
linux/ftp/proftp_telnet_iac. Last accessed 05 May 2020.

[32] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and
Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-
Time) Return-Oriented Programming. In NDSS.

[33] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2009. Dynamic in-
tegrity measurement and attestation: towards defense against return-oriented
programming attacks. In Proceedings of the 2009 ACM workshop on Scalable
trusted computing. ACM, 49–54.

[34] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender:
A detection tool to defend against return-oriented programming attacks. In
Proceedings of the 6th ACM Symposium on Information, Computer and Commu-
nications Security. ACM, 40–51.

[35] Stephen Dolan. 2013. mov is Turing-complete. Cl. Cam. Ac. Uk (2013), 1–4.
[36] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C

Necula. 2006. XFI: Software guards for system address spaces. In Proceedings of
the 7th symposium on Operating systems design and implementation. USENIX
Association, 75–88.

[37] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. 2015. Missing the point(er): On the effectiveness of code pointer
integrity. In 2015 IEEE Symposium on Security and Privacy. IEEE, 781–796.

[38] RezaMirzazade Farkhani, Saman Jafari, Sajjad Arshad,William Robertson, Engin
Kirda, and Hamed Okhravi. 2018. On the Effectiveness of Type-based Control
Flow Integrity. In Proceedings of the 34th Annual Computer Security Applications

13

https://www.exploit-db.com/exploits/22683
https://www.rapid7.com/db/modules/exploit/windows/misc/fb_cnct_group
https://www.rapid7.com/db/modules/exploit/windows/misc/fb_cnct_group
https://www.rapid7.com/db/modules/exploit/linux/ftp/proftp_telnet_iac
https://www.rapid7.com/db/modules/exploit/linux/ftp/proftp_telnet_iac

Conference. ACM, 28–39.
[39] Ivan Fratrić. 2012. ROPGuard: Runtime prevention of return-oriented program-

ming attacks. In Technical report.
[40] Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and

Thorsten Holz. 2016. Enabling Client-Side Crash-Resistance to Overcome Di-
versification and Information Hiding. In NDSS.

[41] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-
Miner: Uncovering Memory Corruption in Linux. In NDSS.

[42] Masoud Ghaffarinia and Kevin W. Hamlen. 2019. Binary Control-Flow Trim-
ming. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 1009–1022.

[43] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012. Enhanced
Operating System Security Through Efficient and Fine-grained Address Space
Randomization. In USENIX Security Symposium. 475–490.

[44] Will Glozer. 2018. wrk-a HTTP benchmarking tool. https://github.com/wg/wrk.
Last accessed 03 May 2020.

[45] Enes Göktaş, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out of control: Overcoming control-flow integrity. In 2014 IEEE Symposium
on Security and Privacy. IEEE, 575–589.

[46] Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. 2014. Size does matter: Why using gadget-chain length to
prevent code-reuse attacks is hard. In 23rd USENIX Security Symposium (USENIX
Security 14). 417–432.

[47] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Geor-
gios Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining
information hiding (and what to do about it). In 25th USENIX Security Sympo-
sium (USENIX Security 16). 105–119.

[48] Enes Göktaş, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Por-
tokalidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. 2018. Position-
independent code reuse: On the effectiveness of ASLR in the absence of infor-
mation disclosure. In 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 227–242.

[49] AndreasHaas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 185–200.

[50] William H. Hawkins, Jason D. Hiser, Michele Co, Anh Nguyen-Tuong, and
Jack W. Davidson. 2017. Zipr: Efficient Static Binary Rewriting for Security. In
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 559–566.

[51] Sean Heelan, Tom Melham, and Daniel Kroening. 2018. Automatic heap layout
manipulation for exploitation. arXiv preprint arXiv:1804.08470 (2018).

[52] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. David-
son. 2012. ILR: Where’d my gadgets go?. In 2012 IEEE Symposium on Security
and Privacy. IEEE, 571–585.

[53] Andrei Homescu, Steven Neisius, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2013. Profile-guided automated software diversity. In Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE Computer Society, 1–11.

[54] Andrei Homescu, Michael Stewart, Per Larsen, Stefan Brunthaler, and Michael
Franz. 2012. Microgadgets: size does matter in turing-complete return-oriented
programming. In Proceedings of the 6th USENIX conference on Offensive Tech-
nologies. USENIX Association, 7–7.

[55] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-oriented programming: On the expressiveness
of non-control data attacks. In 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, 969–986.

[56] Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1868–1882.

[57] Mehmet Kayaalp, Meltem Ozsoy, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2012. Branch regulation: Low-overhead protection from code reuse attacks. In
Computer Architecture (ISCA), 2012 39th Annual International Symposium on.
IEEE, 94–105.

[58] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address space layout permutation (ASLP): Towards fine-grained randomization
of commodity software. In Computer Security Applications Conference, 2006.
ACSAC’06. 22nd Annual. IEEE, 339–348.

[59] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and Michalis
Polychronakis. 2018. Compiler-assisted Code Randomization. In 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 461–477.

[60] Sebastian Krahmer. 2005. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique. https://users.suse.com/~krahmer/no-nx.pdf.
Last accessed 10 May 2020.

[61] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’14), Vol. 14.

[62] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2018. Code-Pointer Integrity. In The Continuing Arms Race.
Association for Computing Machinery and Morgan & Claypool, 81–116.

[63] Musl libc. 2011. A lightweight standard C library. https://www.musl-libc.org.
Last accessed 09 May 2020.

[64] David Lie, Chandramohan Thekkath, MarkMitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. 2000. Architectural support for copy and
tamper resistant software. Acm SIGPLAN Notices 35, 11 (2000), 168–177.

[65] Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1867–1881.

[66] Kangjie Lu, Wenke Lee, Stefan Nürnberger, and Michael Backes. 2016. How to
Make ASLR Win the Clone Wars: Runtime Re-Randomization. In NDSS.

[67] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim,
and Wenke Lee. 2015. ASLR-Guard: Stopping address space leakage for code
reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 280–291.

[68] Giorgi Maisuradze, Michael Backes, and Christian Rossow. 2016. What Cannot
Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses.
In USENIX Security Symposium. 139–156.

[69] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015.
CCFI: cryptographically enforced control flow integrity. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security. ACM,
941–951.

[70] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W. Hamlen, and Michael
Franz. 2015. Opaque Control-Flow Integrity. In NDSS, Vol. 26. 27–30.

[71] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM SIGPLAN notices 42, 6 (2007),
89–100.

[72] Ben Niu and Gang Tan. 2014. Modular control-flow integrity. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 577–587.

[73] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew
Paverd, N. Asokan, and Ahmad-Reza Sadeghi. 2019. HardScope: Hardening
Embedded Systems Against Data-Oriented Attacks. In 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[74] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin Kirda.
2010. G-Free: defeating return-oriented programming through gadget-less bina-
ries. In Proceedings of the 26th Annual Computer Security Applications Conference.
ACM, 49–58.

[75] Aleph One. 1996. Smashing the Stack for Fun and Profit. Phrack 7, 49 (November
1996). http://www.phrack.com/issues.html?issue=49&id=14

[76] Vasilis Pappas, Michalis Polychronakis, and Angelos Keromytis. 2013. Transpar-
ent ROP Exploit Mitigation Using Indirect Branch Tracing. In USENIX Security
Symposium. 447–462.

[77] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the gadgets: Hindering return-oriented programming using in-place code
randomization. In 2012 IEEE Symposium on Security and Privacy. IEEE, 601–615.

[78] Mathias Payer, Antonio Barresi, and Thomas R. Gross. 2015. Fine-grained
control-flow integrity through binary hardening. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
144–164.

[79] Alexander Peslyak. 1997. “return-to-libc” attack. Bugtraq, Aug (1997).
[80] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and

Herbert Bos. 2016. Flip feng shui: Hammering a needle in the software stack. In
25th USENIX Security Symposium (USENIX Security 16). 1–18.

[81] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC) 15, 1 (2012), 2.

[82] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson,
Stephen Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz,
et al. 2017. Address Oblivious Code Reuse: On the Effectiveness of Leakage
Resilient Diversity. In NDSS.

[83] Sascha Schirra. 2014. Ropper tool. https://github.com/sashs/Ropper. Last
accessed 4 July 2018.

[84] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. 2015. Counterfeit object-oriented program-
ming: On the difficulty of preventing code reuse attacks in C++ applications. In
2015 IEEE Symposium on Security and Privacy. IEEE, 745–762.

[85] Felix Schuster, Thomas Tendyck, Jannik Pewny, Andreas Maaß, Martin Steeg-
manns, Moritz Contag, and Thorsten Holz. 2014. Evaluating the effectiveness
of current anti-ROP defenses. In International Workshop on Recent Advances in
Intrusion Detection. Springer, 88–108.

[86] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs. In NDSS.

[87] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In 2012 USENIX

14

https://github.com/wg/wrk
https://users.suse.com/~krahmer/no-nx.pdf
https://www.musl-libc.org
http://www.phrack.com/issues.html?issue=49&id=14
https://github.com/sashs/Ropper

Annual Technical Conference (USENIX ATC 12). 309–318.
[88] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-

into-libc without function calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and Communications Security. ACM, 552–561.

[89] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the effectiveness of address-space randomization.
In Proceedings of the 11th ACM conference on Computer and Communications
Security. ACM, 298–307.

[90] Yan Shoshitaishvili, Christopher Kruegel, Giovanni Vigna, RuoyuWang, Christo-
pher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji
Feng, et al. 2016. Sok: (State of) the art of war: Offensive techniques in binary
analysis. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 138–157.

[91] Kevin Z. Snow, FabianMonrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time code reuse: On the
effectiveness of fine-grained address space layout randomization. In 2013 IEEE
Symposium on Security and Privacy. IEEE, 574–588.

[92] Kevin Z. Snow, Roman Rogowski, Jan Werner, Hyungjoon Koo, Fabian Monrose,
and Michalis Polychronakis. 2016. Return to the zombie gadgets: Undermining
destructive code reads via code inference attacks. In 2016 IEEE Symposium on
Security and Privacy (SP). IEEE, 954–968.

[93] Alexander Sotirov. 2007. Heap feng shui in JavaScript. Black Hat Europe (2007).
[94] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lach-

mund, and Thomas Walter. 2009. Breaking the memory secrecy assumption. In
Proceedings of the Second European Workshop on System Security. ACM, 1–8.

[95] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal
war in memory. In 2013 IEEE Symposium on Security and Privacy. IEEE, 48–62.

[96] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:
Thwarting memory disclosure attacks using destructive code reads. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 256–267.

[97] Corelan Team. 2018. Universal DEP/ASLR bypass with msvcr71.dll and
mona.py. https://www.corelan.be/index.php/2011/07/03/universal-depaslr-
bypass-with-msvcr71-dll-and-mona-py/. Last accessed 10 February 2018.

[98] PaX Team. 2003. PaX address space layout randomization (ASLR). (2003).
[99] Uptrends. 2020. Website Speed Test. https://www.uptrends.com/tools/website-

speed-test. Last accessed 03 May 2020.
[100] Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen,

Herbert Bos, and Cristiano Giuffrdia. 2017. The dynamics of innocent flesh on
the bone: Code reuse ten years later. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1675–1689.

[101] Victor Van Der Veen, Enes Göktaş, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A tough call: Mitigating advanced code-reuse attacks at the
binary level. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 934–953.

[102] Konstantin vz’One Enchant. 2014. ftpbench-benchmark for load testing FTP
servers. https://github.com/selectel/ftpbench. Last accessed 03 May 2020.

[103] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.
Binary stirring: Self-randomizing instruction addresses of legacy x86 binary code.
In Proceedings of the 2012 ACM conference on Computer and Communications
Security. ACM, 157–168.

[104] JanWerner, George Baltas, Rob Dallara, NathanOtterness, Kevin Z. Snow, Fabian
Monrose, and Michalis Polychronakis. 2016. No-execute-after-read: Preventing
code disclosure in commodity software. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ACM, 35–46.

[105] David Williams-King, Graham Gobieski, Kent Williams-King, James P. Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code
Re-Randomization. In OSDI. 367–382.

[106] Rafal Wojtczuk. 2001. The advanced return-into-lib (c) exploits: PaX case study.
Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e (2001).

[107] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. 2013. Practical control flow integrity and
randomization for binary executables. In 2013 IEEE Symposium on Security and
Privacy. IEEE, 559–573.

[108] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries.
In USENIX Security Symposium. 337–352.

A Appendix
A.1 Register corruption analysis
Typically, a gadget contains a core instruction (other than ret) that
serves the purpose of that gadget. For example, the core instruction
of the gadget in Listing 1 is mov eax, edx and the gadget serves
as a move register (MR) gadget. The core instruction is the in-
struction that an attacker needs. All the instructions (except ret)

before/after the core instruction is unnecessary. However, these
extra instructions may modify the source/destination register of
a core instruction. If these extra instructions modify the registers
of a core instruction, we treat the gadget as a corrupted gadget. In
Listing 1, the instruction (mov edx, dword ptr [rdi]) before the core
instruction modifies the source register (edx) of the core instruc-
tion and the instructions (shr eax, 0x10; xor eax, edx) after the core
instruction modify the destination register (eax). We identify three
scenarios when core instructions get corrupted as follows:

(1) Scenario 1: A core instruction is only affected by the instruc-
tion(s) before the core instruction,

(2) Scenario 2: A core instruction is only affected by the instruc-
tion(s) after the core instruction, and

(3) Scenario 3: A core instruction is affected by both the instruc-
tion(s) before/after the core instruction.

For each gadget, we consider these three scenarios and determine
whether the gadget is corrupted or not. We also identify three types
of gadgets considering the three scenarios above where the core
instruction can get corrupted. Figure 6 shows the three type of
gadgets. Each gadget has one or more instructions before or after
the core instruction. For example, Type 1 gadget in Figure 6 has a
core instruction in the middle and one or more instructions before
or after the core instruction. The core instruction has two registers
for this kind. One or more instruction(s) before the core instruction
may modify the source register (rdx) in Figure 6a. Similarly, one
or more instruction(s) after the core instruction may modify the
destination register (rax) in the figure.

Listing 1: An example gadget where the core instruction is
“mov eax, edx;".
mov edx, dword ptr [rdi] ; mov eax, edx; shr eax, 0x10; xor eax, edx; ret ;

(a) Type 1 gadget

(b) Type 2 gadget

(c) Type 3 gadget

Figure 6: A set of gadget types for measuring the quality of
individual gadget through the register corruption analysis

However, for Type 2 gadget in Figure 6b, the core instruction
has just one register. That means that the additional instructions
before the core instruction cannot affect the register of the core
instruction. Thus, we do not care the instructions before the core

15

https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
https://www.corelan.be/index.php/2011/07/03/universal-depaslr-bypass-with-msvcr71-dll-and-mona-py/
https://www.uptrends.com/tools/website-speed-test
https://www.uptrends.com/tools/website-speed-test
https://github.com/selectel/ftpbench

Table 5: Gadgets used in advanced ROP attacks [8, 14, 15, 45, 91] . △ indicates an addition/subtraction/multiply/division. ϕ
indicates logical operations such as and, or, left-shift, and right-shift. ▽ indicates any operation that modifies stack pointer
(SP). SN → Short name. TC? indicates whether a gadget is included in the Turing-complete gadget set or not.

Gadget types Purpose Minimum footprint Example TC? SN Source
Move register Sets the value of one register by another mov reg1, reg2; ret mov rdi, rax; ret ✓ MR [91]
Load register Loads a constant value to a register pop reg; ret pop rbx; ret ✓ LR [14, 91]

Arithmetic Stores an arithmetic operation’s result of
two register values to the first △ reg1, reg2; ret add rcx, rbx; ret ✓ AM [91]

Load memory Loads a memory content to a register mov reg1, [reg2]; ret mov rax, [rdx]; ret ✓ LM [14, 91]

Arithmetic load △ a memory content to/from/by a
register and store in that register △ reg1, [reg2]; ret add rsi, [rbp]; ret ✓ AM-LD [91]

Store memory Stores the value of a register in memory mov [reg1], reg2; ret mov [rdi], rax; ret ✓ SM [91]

Arithmetic store △ a register value to/from/by a memory
content and stores in that memory △ [reg1], reg2; ret sub [ebx], eax; ret ✓ AM-ST [91]

Logical Performs logical operations

ϕ reg1, reg2; ret
ϕ reg1, const; ret
ϕ [reg1], reg2; ret
ϕ [reg1], const; ret

shl rax, cl; ret; ✓ LOGIC [81]

Stack pivot Sets the stack pointer, SP ▽ sp, reg xchg rsp, rax × SP [91]
Jump Sets instruction pointer, EIP. jmp reg jmp rdi ✓ JMP [91]

Call Jumps to a function through a register
or memory indirect call call reg or call [reg] call rdi ✓ CALL [91]

System Call Invokes system functions syscall or int 0x80; ret syscall ✓ SYS [81]

Call preceded Bypasses call-ret ROP defense policy mov [reg1], reg2;
call reg3

mov [rsp], rsi;
call rdi × CP [14]

Context switch Allows processes to write to Last
Branch Record (LBR) to flash it long loop.

3dd4: dec, ecx
3dd5: fmul, [BC8h]
3ddb: jne, 3dd4

× CS1 [14]

Flashing Clears the history of LBR
(Last Branch Record)

Any simple call
preceded gadgets with
a ret instruction

jmp A
...
A: mov rax, 3; ret;

× FS [15]

Terminal Bypasses kBouncer heuristics Any gadgets that are
20 instructions long N/A × TM [15]

Reflector Allows to jump to both call-preceded
or non-call-preceded gadgets

mov [reg1], reg2;
call reg3; ... ; jmp reg4

mov [rsp], rsi;
call rdi; ... ; jmp rax × RF [14]

Call site
This gadget chains the control to go
forward when we have the control
on the stack and ret

call reg or call [reg];
...
ret;

call rdi;
...
ret;

× CS2 [45]

Entry point
This gadget chains the control to go
forward when we have the control
of a call instruction

pop rbp;
...
call/jmp reg or
call/jmp [reg]

pop rbp
...
call/jmp reg or
call/jmp [reg]

× EP [45]

BROP Restores all saved registers

pop rbx; pop rbp;
pop r12; pop r13;
pop r14; pop rsi;
pop r15; pop rdi;
ret;

pop rbx; pop rbp;
pop r12; pop r13;
pop r14; pop rsi;
pop r15; pop rdi;
ret;

× BROP [8]

Stop Halts the program execution Infinite loop 4a833dd4: inc rax
3ddb: jmp 3dd4 × STOP [8]

instruction. For Type 3 gadget in Figure 6c, the core instruction
writes the value of rdi to a memory location pointed by rax. That is
why we do not care if the register (rax, rdi) values get modified by
the instructions after the core instructions.

A gadget as corrupted if registers in the core instruction get
modified. We perform our register corruption analysis by identify-
ing the corrupted registers in the core instructions of a gadget as
follows.

First, we identify the set of instructions (before/after the core
instruction) that can modify the source/destination register of the
core instruction. We find that 17 instructions (mov, lea, add, sub,
imul, idiv, pop, inc, dec, xchg, and, or, xor, not, neg, shl, and shr)
can modify a register value of a core instruction. That means that
these instructions use the source register of a core instruction as its

destination register or the destination register of a core instruction
as its source register. We treat the registers of such instructions as
conflicting registers.

Second, we extract the conflicting registers (RegSet1) for Types 1
and 3 gadgets and RegSet2 for Types 1 and 2.

Third, if the RegSet1 and/or RegSet2 contain more than one
conflicting registers, we treat the core instruction of that gadget as
corrupted, i.e., the gadget itself is corrupted.

In this way, we measure the register corruption rate for MV, LR,
AM, LM, AM-LD, SM, AM-ST, SP, and CALL gadgets.

A.2 Validation of randomization results
Weevaluate the randomization tools, i.e., Zipr [50], SR [25],MCR [53],
and CCR [59] using the common set of applications and libraries
that the four randomization tools can randomize. Figure 7 shows

16

Table 6: Gadgets with gadget types in the priority and MOV
TC gadget sets.

Priority MOV TC
Type Gadget Type Gadget

LR 1. pop reg
2. pop reg; pop reg MR 1. mov reg, reg/const

AM 3. add reg, const ST 2. mov [reg], reg
LM 4. mov reg, [reg]; ret STCONSTEX 3. mov [reg+offset], reg/const
JMP 5. jmp reg STCONST 4. mov [reg], const
ST 6. mov [reg], reg; ret LM 5. mov reg, [reg]
SP 7. xchg rsp, reg LMEX 6. mov reg, [reg+offset]

LOGIC 8. xor reg, reg
9. xor reg, const SYS 7. syscall

MR 10. mov reg, reg
11. mov reg, const

CALL 12. call reg
13. mov reg, reg, call reg

SYS 14. syscall

the reduction of Turing-complete gadgets observed for four (4) ran-
domization tools using the common set of applications and libraries.
In most cases, the reduction using a different set of applications
and libraries is similar to the reduction using a common set of
applications.

Figure 7: Reduction (%) of TC gadgets observed for four (4)
randomization tools using the common set of applications
and libraries that the randomization tools can randomize.

Figure 8: The number of Turing-complete minimum foot-
print gadgets at different optimization levels for GCC.

Figure 9: Instruction location randomization. This figure is
adopted from ILR [52].

17

Table 7: Key differences in various randomization and re-randomization schemes evaluated.

Tools Randomization
Scheme(s)

Randomization
Time

Compiler
Assistance
Required?

Techniques Performance
Overhead

Shuffler [105] Function-level
re-randomization Runtime No - Loads itself as a user space program

- Contains a separate thread for shuffling the functions continuously 14.9% [105]

Zipr [50] Instruction-level
randomization

Static
rewriting No

- Reorders all instructions and generates ILR static rewrite rules
- Executes randomly scatter instructions using a process-level virtual
machine (PVM) utilizing static rewrite rules or a fall-through map

- Keeps the same layout unless rewrite again

<5% [50]

SR [25] Function-level
randomization

Load time
reorder No

- Adds a linker wrapper that intercepts calls to the linker and asks the
selfrando library to extract the necessary information to reorder functions

- Reorders functions every time when a binary is loaded into memory
<1% [25]

MCR [53] Function- and register-
level randomization

Compile & Link
time reorder Yes

- Reorders functions and machine registers during link time optimization
- Implements compile-time randomization but defers compilation until
all translation units have been converted to bitcode

- Keeps the same layout unless compiled and built again

1% [53]

CCR [59] Function and block-
level randomization

Installation
time Yes

- Extracts metadata during compilation
- Reorders functions and basic-block based on the metadata
- Keeps the same layout unless re-randomized again

0.28% [59]

Table 8: Register corruption for various gadgets. The numbers before and after the vertical bar (|) represent the average number
of unique register usage and register corruption rate in a gadget, respectively. CG→ Coarse-grained. FG→ Fine-grained. Fine-
grained versions prepared using SR [25].

C
G

Program MV LR AM LM AM-LD SM AM-ST SP CALL Average
Nginx 4 | 11% 2 | 0.3% 3 | 21% 3 | 44% 3 | 6% 2 | 47% 2 | 13% 2 | 6% 2 | 9% —
Apache 4 | 16% 2 | 0.5% 3 | 37% 2 | 26% 3 | 10% 2 | 24% 2 | 5% 2 | 3% 2 | 7% —
ProFTPD 3 | 69% 2 | 0.6% 3 | 7% 2 | 24% 2 | 20% 2 | 16% 2 | 11% 4 | 1% 1 | 6% —
Average 4 | 32% 2 | 0.5% 3 | 21.7% 2 | 31.3% 3 | 12% 2 | 29% 2 | 9.7% 3 | 3.3% 2 | 7.3% 3 | 16.3

FG

Nginx 3 | 9% 1 | 0.1% 2 | 0.1% 3 | 15% 2 | 45% 2 | 13% 2 | 47% 1 | 7% 2 | 4% —
Apache 3 | 27% 1 | 1% 3 | 41% 3 | 27% 2 | 19% 2 | 41% 2 | 0% 2 | 2% 3 | 27% —
ProFTPD 3 | 14% 2 | 1% 3 | 4% 2 | 19% 2 | 22% 2 | 35% 2 | 6% 3 | 11% 3 | 28% —
Average 3 | 16.7% 1 | 0.7% 3 | 15% 3 | 20.3% 2 | 28.7% 2 | 29.7% 2 | 17.7% 2 | 6.7% 3 | 19.7% 2 | 17.24 ∼5.7%⇑

CFI

ASLR

Re-randomization (TASR [6],
Shuffler [105], Remix [21])

AC1 : Vulnerable to
simple ROP attacks

AC2 : Vulnerable to simple ROP
attacks if re-randomization time

window is longer than the attack time

Memory protection + CPI or
DPI (XnR [4], NEAR [104],

Readactor [27], Heisenbyte [96],
Oxymoron [5], ASLR-Guard [67])

Re-randomization (TASR [6],
Shuffler [105], Remix [21])

AC3 : Vulnerable to JIT-ROP [91]
and BROP [8] type attacks

AC4 : Vulnerable to JIT-ROP [91] type attacks if re-randomization
time window is longer than the attack time

AC5 : Vulnerable to AOCR [82]
and CROP [40] type attacks

AC6 : Prevents ROP-based
attacks but vulnerable to
data-only attacks [55, 56]

No Yes

Coarse Fine

No Yes
No Yes

No Yes

Figure 10: High-level view of the types of ROP attacks and attack-paths based on various security measures. Each rectangle
and circle indicate security measures and attack types, respectively. AC stands for attack condition. All the attack conditions
have W⊕X, PIE, Canary, and RELRO implicitly.

18

	Abstract
	1 Introduction
	2 Threat Model and Definitions
	3 JIT-ROP vs. Basic ROP Attacks
	3.1 Memory Layout Derandomization
	3.2 System Access
	3.3 Payload Generation

	4 Measurement Methodologies
	4.1 Methodology for Derandomization
	4.2 Methodology for System Access
	4.3 Methodology for Payload Generation

	5 Evaluation Results and Insights
	5.1 Re-randomization Upper Bound
	5.2 Impact of the Location of Pointer Leakage
	5.3 Impact on the Availability of Gadgets
	5.4 Impact on Performance Overhead
	5.5 Impact on the Quality of a Gadget Chain
	5.6 Availability of Libc Pointers

	6 Discussion
	7 Related Work
	8 Conclusions
	References
	A Appendix
	A.1 Register corruption analysis
	A.2 Validation of randomization results

