
COVER FEATURE FORENSICS, DIAGNOSTICS, AND TRACING

54	 C O M P U T E R   P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 2 2 © 2 0 2 2 I E E E

Salman Ahmed, IBM Research

Ya Xiao, and Taejoong (Tijay) Chung, Virginia Tech

Carol Fung, Virginia Commonwealth University

Moti Yung, Google LLC and Columbia University

Danfeng (Daphne) Yao, Virginia Tech

We examine the security, privacy, and reliability of Google 

and Apple’s COVID-19 exposure notification technology, 

using actual case studies and realistic use cases. Our analysis 

validates the system, providing piece of mind for adopters 

of contact tracing and potentially boosting transparency. 

COVID-19 has become the deadliest viral out-
break around the globe since the Spanish 
inf luenza pandemic in 1918. At the begin-
ning, with the absence of vaccines, contain-

ment and mitigation were the best strategies, and they 
continue to be when new waves of variants and muta-
tions of the virus appear. Contact tracing can greatly 
help early containment by linking people who have 
been exposed to others who are infected and tracking 

and notifying them. Advances in computer technol-
ogy aid the process by following individuals’ mobile 
devices and proximity through GPS1 and Bluetooth 
Low Energy (BLE) beacons.2,3

To combat COVID-19 and aid governments and health 
organizations with contact tracing, Google and Apple jointly 
introduced a BLE technology, Google/Apple Exposure 
Notification (GAEN), in April 2020.4 GAEN uses interoper-
able BLE signals to broadcast Bluetooth beacons from one 
device to another when Android/iOS users come in close 
proximity. The beacons help track the distance between 
users and the duration of users’ contact. When a person 
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is diagnosed as having COVID-19 at the 
time of contact or within a valid time 
frame afterward (and only then), the 
system can notify other users about 
potential exposure (the infected user’s 
smartphone uploads the generators of 
its signal, which other users’ devices 
pull from a server).

Researchers have scrutinized con-
tact tracing technology and warned 
that its adoption could have privacy 
and security issues,5–11 thus perhaps 
advocating against its wide deploy-
ment. However, these works pri-
marily engineered attacks based on 
abstract protocol designs and (theoret-
ically formulated) adversaries, which at 
times represent an extreme, economi-
cally unjustified, and expensive enemy 
rather than a typical one. Most did not 
verify the technology through actual 
investigations (accessing software 
and experimenting with devices), and 
none tried to discover scenarios in 
which the system was robust against 
typical attacks, which are less expen-
sive and intensive than the breaches 
they describe.

While scrutiny is always important, 
none of the earlier works assess the fea-
sibility of attacks under real circum-
stances (when the system is deployed) 
in terms of operations and costs ver-
sus what an attacker gains beyond a 
minimal disturbance to the system. 
Granted, there are cases of heavily 
invested and massive deployments of 
devices/readers that can attack the sys-
tem, and some attacks are extreme due 
to the ability of the adversary (gaining 
full access to devices). In this sense, 
the researchers’ attacks were, indeed, 
good to know about as extreme but 
unlikely events.

This work, like others12–15 that eval-
uate trust, security, privacy, useful-
ness, traceability, transparency, and 

reliability, means to fill the gap and 
investigate contact tracing in a balanced 
way by inspecting the actual system (its 
software and operation) and assessing 
its strengths as well as its weaknesses 
(essentially, assuming that the system 
encounters a typical attack, not one by 

an adversary that spends extensively to 
launch a dedicated, targeted attack. The 
investigation can be useful for under-
standing the system’s resiliency during 
this and future pandemic outbreaks. 
Specifically, we perform an analysis of 
GAEN with two focus points: 1) ensuring 
that the library code (from Google and 
Apple) and contact tracing code (from 
various government and health orga-
nizations) protect user privacy and 2) 
investigating privacy flaws in the design 
and implementation of GAEN, if any.

COVIDWISE,16 Virginia’s official con-
tact tracing app, uses the GAEN system. 
Other major GAEN-based contact tracing 
apps around the globe include COVID 
Alert (Canada), Corona-Warn-App (Ger-
many), COVID Tracker (Ireland), Swiss-
Covid (Switzerland), Immuni (Italy), 
NHS COVID-19 (United Kingdom), and 
several U.S. apps, including GuideSafe 
(Alabama), Covid Watch (Arizona), 
COVID Alert NY (New York), Care19 
Alert (Wyoming), Safer Illinois (Univer-
sity of Illinois), and PocketCare S (State 
University of New York at Buffalo). As of 
mid-March 2021, COVIDWISE was the 

most adopted (10.5%) contact tracing 
app in the United States.17 Our examina-
tion of GAEN is conducted with it.

In the rest of this article, we explain 
and analyze GAEN’s privacy design 
and experimentally evaluate several 
BLE-related properties. We confirm 

that GAEN prevents tracking through 
random Bluetooth addresses, thus 
providing strong privacy guarantees. 
We find that iPhones deliver strong 
privacy protection via the nonresolv-
able random private address and pre-
vent malicious apps from snooping 
on users’ rolling proximity identifi-
ers (RPIs). We also confirm that RPIs’ 
refresh interval is within the range 
of 10–20 min18 and may vary with the 
distance between devices. We break 
down assumptions about, and assess 
the feasibility of, advanced attacks tar-
geting contact tracing apps.

DESIGN OVERVIEW OF GAEN
GAEN broadcasts and stores BLE bea-
cons without any interaction with the 
app if the system is turned on. How-
ever, a user can turn off the system 
through the app and the exposure 
notification settings. GAEN provides 
application programming interfaces 
( A P I s)  t o  suppor t d i f ferent oper-
ations. Figure 1 illustrates interactions 
between a user, the exposure notifica-
tion system, and the app. GAEN uses 

THERE ARE CASES OF HEAVILY INVESTED 
AND MASSIVE DEPLOYMENTS OF 

DEVICES/READERS THAT CAN ATTACK 
THE SYSTEM, AND SOME ATTACKS  

ARE EXTREME.
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BLE due to the technology’s availabil-
ity on a smartphone needed for applica-
tions such as smart homes, proximity 
tracking, wearables, health care, and 
fitness that require little data transfer 
and low latency. BLE’s practical com-
munication range is 10–20 m (33–66 ft),  
which is sufficient for GAEN. The app 
also uses BLE to optimize power con-
sumption, requiring significantly less 
energy than traditional BLE commu-
nication for peripherals.21 Besides, 
GAEN’s passive power usage (that 
is, broadcasting only when devices 
are c lo s e t o one a no t he r)  f u r t he r 
reduces consumption.

Temporary exposure keys, 
Bluetooth beacon, and RPIs
The heart of GAEN is the temporary 
exposure key (TEK). A TEK is a random 
number created using a cryptographi-

cally secure pseudorandom generator. 
It is a 16-byte number used to identify 
a device for a day within its lifetime. 
The GAEN system generates a new TEK 
every 24 h to make it hard for attackers 
to track infected users beyond a one-
day period. In addition, the Bluetooth 
beacon’s payload includes an identifier: 
the RPI, which is derived from a TEK as 
an AES encryption key (and the current 
time indication within the 24-h period 
as the message). A Bluetooth beacon’s 
payload also carries metadata such as 
the protocol version and transmission 
power, which are encrypted using a 
key derived from the TEK. The RPI and 
metadata are expected to change every 
10–20 min (see “Exposure Notification 
Bluetooth Specification”18) to prevent 
attackers from tracking the devices of 
uninfected users by exploiting Blue-
tooth beacons that are overly persistent.

When a user is infected, his or her 
device uploads the TEKs for the relevant 
period (14 days) to a server. Other users’ 
devices pull the TEKs of infected peo-
ple, produce RPIs, and match the results 
against their stored RPIs to detect expo-
sure. Because TEKs are daily keys, it is 
impossible to link RPIs between days 
(when one downloads TEKs from the 
server, there is no indication which 
TEKs on other days are coming from the 
device of a given day’s TEK). In terms of 
basic privacy, the goal of the system is 
to relate to TEKs and RPIs, which are 
random objects, and not to users and 
devices. This design philosophy was 
originally shared by the GAEN system 
and a number of academic groups in an 
attempt to minimize the loss of privacy 
while enabling contact tracing (and 
allowing reasonable storage and com-
putations at devices).

API and app responsibilities
Contact tracing apps and the underlying 
GAEN system have different responsibil-
ities. GAEN is responsible for transmit-
ting, receiving, and storing Bluetooth 
signals. Apps enable people to share 
positive diagnoses and automatically 
notify the central server and, eventu-
ally via the system, others who were in 
contact with them. Health authorities 
(for example, the Virginia Department 
of Health) set exposure detection 
thresholds (that is, the minimum dis-
tance between users and duration of 
contact) in the apps. GAEN provides 17 
APIs to facilitate interactions with con-
tact tracing apps (for example, COVID-
WISE). The key responsibilities of APIs 
are TEK creation and management, 
RPI generation and management, BLE 
broadcasting and scanning, and expo-
sure detection. The apps are respon-
sible for user authorization, down-
loading TEKs, presenting exposure 
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FIGURE 1. The user and contact tracing app interactions with the exposure notification 
system. TEK: temporary exposure key. RPI: rolling proximity identifier. API: application 
programming interface.
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notifications, and uploading TEKs. For 
example, the Virginia Department of 
Health enables users to share positive 
COVID-19 test results, and for secu-
rity, it assigns a six-digit PIN to each 
patient, who may enter the number 
in COVIDWISE, as shown in Figure  2. 
This disclosure is voluntary in Vir-
ginia. People who have been in close 
proximity to a COVID-19-infected per-
son for at least T minutes in the past 
14 days are notified. The Department 
of Health determines and sets the 
value of T.

Overview of GAEN’s 
privacy design
Out of the 17 GAEN APIs, two—get-
Temporar yExposureKeyHistor y() and 
provideDiagnosisKeys() in Android—
deal with potentially sensitive infor-
mation. The first fetches the TEKs 
from the past 14 days from on-device 
data storage and provides them to the 
app for uploading to the key server. 
Apps use the second API to insert one 
or more batches of TEKs into on-de-
vice storage. These APIs are sensi-
tive because they exchange critical 
i n f or m at ion (t h at i s ,  T E K s) w it h 
the exposure notification system. To 
ensure the privacy and integrity of 
the TEKs, the APIs use a specific file 
format (for example, export.bin) and 
a verification method through sig-
natures (for instance, export.sig). On 
the other hand, contact tracing apps 
are responsible for securely com-
municating with the key server and 
uploading and downloading TEKs. 
The apps and key server verify the 
i ntegr it y of TEKs t h rough d igita l 
signatures. The apps do not use any 
personally identifiable information 
(PII), device identifier, or Bluetooth 
identifier in the process of sharing 
COVID-19-positive information.

Threat models and claimed 
privacy guarantees
We consider four threat levels to dis-
cuss GAEN’s privacy guarantees: the 1) 
the walking trail, 2) your neighbor, 3) 
stalker, and 4) organized crime mod-
els. We define and categorize threat 
severities based on attackers’ privi-
lege levels for accessing RPI beacons in 
different real-world scenarios. These 
privilege levels are compatible with 
the assumptions made in the litera-
ture.5–11 In the walking trail and your 
neighbor models, an adversary can 
sniff a limited number of beacons to 
obtain RPIs. In the stalker model, an 
adversary can sniff a small number of 
BLE beacons (for example, using fewer 
than 10 BLE sniffing devices) to obtain 
RPIs. In the organized crime model, we 
assume that an adversary can compro-
mise a smartphone, set up a large-scale 
infrastructure to sniff BLE beacons, 
and hack health-care systems to obtain 
PINs to share information about posi-
tive diagnoses. We detail these threat 
levels with attack scenarios in Table 1.

The GAEN and contact tracing app 
privacy guarantees include five key 
aspects: 1) preventing attackers, public 
health authorities, governments, and 
Apple/Google from tracking and moni-
toring users’ movements; 2) generating 
TEKs without using PII or any context 
(like the geographic location); 3) sharing 
COVID-19-positive diagnoses without 
revealing user information; 4) prevent-
ing attackers from obtaining PII even if 
they gain access to TEKs; and 5) enabling 
users to turn off GAEN at their discretion. 
Furthermore, based on the principle of 
least privilege, TEKs never leave users’ 
devices unless there is a positive test.

BLE AND RPI EXPERIMENTS
We conducted simple experiments 
to investigate various BLE aspects in 

GAEN and COVIDWISE to confirm the 
privacy guarantees. Using PacketLog-
ger (an extension to the Xcode Apple 
developer tool) in iOS and Bluetooth 
system logs in Android, we intercepted 
and collected Bluetooth beacons to 
examine whether all the intervals work 
as expected and whether there are any 
identifiers (for example, resolvable 
addresses) in the Bluetooth beacons. 
We also inspected device storage for 
keys and identifiers in Android (using 
a Pixel 4a) and iOS (using an iPhone 7) 
by measuring the number of Bluetooth 
beacons sent in 24 h.

FIGURE 2. COVIDWISE enables a 
COVID-19-positive patient to share his 
or her test result by using a six-digit PIN. 
(Source: COVIDWISE.) 
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Randomness of 
Bluetooth addresses
We examined the randomness of Blue-
tooth addresses used in transmitting 
beacons to observe if a receiving entity 
can resolve the sender’s address. We 
observed that Android and iOS uti-
lize random addresses to conceal the 
identity of a sender while transmitting 
advertisement packets, as expected. 
Android and iOS apply different types of 
random addresses. Android phones use 

resolvable random private addresses, 
while iPhones employ nonresolvable 
random private addresses. The differ-
ence is that Android devices enable 
trusted parties (for example, paired 
devices) to resolve the random private 
addresses. However, both operating sys-
tems preserve privacy, assuming that 
paired Bluetooth devices (for instance, 
a user’s AirPods) are trustworthy. It is 
important to note that contact tracing 
apps do not require location permission 

in the latest version of Android (that is, 
Android 11). Older versions of Android 
apps require location settings to be 
turned on for Bluetooth communication.

RPI interception
We examined the runtime RPI (the 
Bluetooth beacon) and metadata by 
using PacketLogger for iOS devices 
and Bluetooth Host Controller Inter-
face snoop logs for Android devices. 
We observed that each device received 

TABLE 1. GAEN privacy leaks and their severity versus realistic and 
complex threat models and their assumptions.

ID
Threat 
level

Attack 
difficulty Attack requirement Attack goal

Information 
leaked

Severity 
of leak Reference

1 Walking 
trail

Low Access to one RPI (common scenario) Any information 
about a user

None None —

2 Your 
neighbor

Low Access to zero to five RPIs from three to five 
victims, considering that neighbors come 
nearby zero to five times a day (common 
scenario)

Any information 
about a user

None None —

3 Stalker 1 Low Access to at least RPIs from five to 10 victims in 
a 10–20-min window

Estimate the number 
of GAEN users 
around an attacker

Approximate 
number of nearby 
GAEN users

None Grünblatt19

4 Stalker 2 Medium 1. �Access RPIs from at least one victim; tracking 
a victim for 1 h requires all RPIs in that hour

2. �Maintain continuity of RPI reception from 
a victim

Continuously track 
a user

None (not 
trackable, 
based on our 
observation)

None Vuagnoux8

5 Organized 
crime 1

High 1. �Access unlimited RPIs with location data 
from 10+ victims

2. �Access published TEKs through jailbroken 
or rooted phones or imitating a contact 
tracing app

3. �Aggregate data for each 10–20-min time 
window: dates, times, interaction graphs, 
social graphs, addresses, location types 
(residential, workplace, library, and so on), 
surveillance cameras

Profile movements 
of infected users 
and deanonymize 
them

Imprecise 
deanonymization 
(precision 
decreases with 
increasing 
number of 
profiles)

Medium Troncoso 
et al,2 
Baumgärtner 
et al.,6 and 
Seiskari7

6 Organized 
crime 2

High 1. �Access a victim’s smartphone through 
hacking

2. Bypass storage protection

Obtain a victim’s 
infection status

Information about 
whether a victim 
is infected

Medium Chan et al.20

Authorized licensed use limited to: IBM. Downloaded on June 13,2022 at 18:01:12 UTC from IEEE Xplore.  Restrictions apply. 



	 F E B R U A R Y  2 0 2 2 � 59

a set of advertising payloads around 
every 4 min in Android and 3.5 min in 
iOS. Figure 3 presents a raw BLE adver-
tisement packet captured from an 
Android device (a Pixel 4a). The final 
20 bytes are composed of a 16-byte RPI 
and 4 bytes of metadata. We found 
that the advising packet RPI and meta-
data are zeros for iOS devices. This 
is because iOS blocks access to avoid 
ma l icious t h i rd-pa r t y apps f rom 
snooping on users’ RPIs. This mecha-
nism renders attack proposals based 
on stealing RPIs (for example, as 
described in Grünblatt19) useless in 
reference to iOS.

RPI intervals
We intercepted Bluetooth beacons to 
examine the RPI transmission intervals. 
In our experiment, we used one Android 
device (a Pixel 4a) and two iPhones 
(iPhone 7s). We positioned each device 
according to the distance in Figure  4. 
Based on RPIs received on the Android 
smartphone, we obser ved that the 
transmission interval varied with the 
distance between the devices. How-
ever, the intervals satisfied those in the 
specifications (that is, between 10 and 

20 min). Besides, the distance approx-
imation between may not be precise 
due to device position (for example, 
inside pockets) and the presence of 
glass partitions and personal pro-
tective equipment.

Key and RPI storage
We analyzed RPI storage and found 
that it occupied around 0.59–0.63 MB 
per day on Android and iOS devices. 
Since GAEN stores keys and RPIs for 
14 days, a device may devote roughly 
8.25–8.8 MB of storage if we consider 
uninterrupted interactions between 
phones. In practice, interactions are 

interrupted due to movements and 
obstacles, cutting the total storage 
to less than 8 MB. We were unable to 
locate stored TEK values in the logs 
o f  t he A nd r oid a nd iOS de v ice s , 
a s expected.

GAEN’S PRIVACY WITH 
RESPECT TO THREAT MODELS
As with all security solutions, the 
privacy guarantees of GAEN are rel-
ative. There certainly exist extreme 
scenarios (for example, those in Tron-
coso et a l., 2 Bau mgä r t ner et a l.,6 
Gvili,7 Vuagnoux,8 Grünblatt,19 and 
Chan20) where attackers may learn 

Time Bluetooth Address RPI + Metadata

02:18:07 B7:CD:6B:64:5D:33 3AD310DCA4F810EF2B0A17968BE47CB6 EC59B6B6

02:22:06 B7:CD:6B:64:5D:33 3AD310DCA4F810EF2B0A17968BE47CB6 EC59B6B6

02:27:00 C6:EB:E9:DA:B2:09 6D5C54D1376E95B7872CFFFC93425903 102A1673

02:31:13 D6:2C:59:37:FE:24 0376829E0EBD180E82E5756E52CE7CBD7C465A03

02:35:30 D6:2C:59:37:FE:24 0376829E0EBD180E82E5756E52CE7CBD7C465A03

02:39:32 F0:9A:11:EC:62:11 81E43856A116E224DB876D9D763CAA52 62DDAC02

02:43:16 F0:9A:11:EC:62:11 81E43856A116E224DB876D9D763CAA52 62DDAC02

FIGURE 3. Twenty bytes of advertised random numbers with an RPI and metadata 
captured from a Pixel 4a.
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FIGURE 4. An RPI transmission interval experiment. The interval varies with the device distance. (a) A log from an Android phone, with 
an RPI interval of 18 min, 19 s. (b) A log from an Android phone, with an RPI interval of 16 min, 21 s. dBm: decibels per milliwatt. 
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additional information. If an adver-
sary has access to RPIs, TEKs, and 
RPI date–time information for thou-
sands of users, it can profile people’s 
movements.2,6,7 Table 1 summarizes 
the attack difficulty and leak sever-
ity in GAEN under multiple (increas-
ing) threat categories, including the 
walking trail causal encounter, your 

neighbor, stalker, and organized 
crime models. The first three models 
capture the most typical threat sce-
narios, in which GAEN leaks no sensi-
tive information.

An adversary in the your neighbor 
model (ID 2) may occasionally receive 
beacons from a few (for example, 
three to five) nearby users. The differ-
ence between the your neighbor (ID 2)  
and stalker 1 (ID 3) models is that 

adversaries in the former receive RPIs 
normally, while adversaries in the 
latter deliberately orient themselves 
(for instance, by changing locations) 
to intercept RPIs from more victims 
(for example, five to 10). If successful, 
the stalker 1 model reveals only the 
approximate number of nearby GAEN 
users, which poses no privacy threat.

A reported attack8 relied on an 
asynchronous change of Bluetooth 
addresses and RPIs, which is repre-
sented in the stalker 2 model (ID 4) in 
Table 1. However, this attack no lon-
ger works, as GAEN requires the Blue-
tooth address and RPI to change syn-
chronously, which we experimentally 
confirmed by extracting around 11,000 
random Bluetooth addresses and RPI 
pairs from the advertising packets 

during three days. We obtained adver-
tising packets from an Android (version 
11) device (a Pixel 4a), where the adver-
tising packets were received from two 
iPhones (an iPhone 7 and iPhone 11 with 
iOS 15.0.2) placed 6–12 ft apart and per-
forming regular activities. Each Blue-
tooth address is paired with a unique 
RPI and vice versa. Using a Python pro-
gram, we checked for the existence of 
nonunique pairs by searching for the 
use of a Bluetooth address with multi-
ple RPIs or an RPI with multiple Blue-
tooth addresses. We observed no asyn-
chronous changes of the Bluetooth 
addresses and RPIs. Hence, user pri-
vacy is preserved in the stalker 2 model  
(ID 4). Table 2 provides a few unique 
Bluetooth addresses and RPI pairs.

Some of the attack scenarios in 
Table 1 have rather strong assump-
tions regarding the complexity of the 
setup and demand huge resources. For 
example, attackers in the organized 
crime 1 model (ID 5) require TEKs and 
aggregated data in each 10–20-min  
t i me w i ndow to dea nony m i ze i n
fected users.2,6,7 Aggregated data 
include public and sensitive infor-
mation, such as dates, times, interac-
tion graphs, social graphs, addresses, 
location types (for example, residen-
tial buildings, workplaces, and librar-
ies), and surveillance cameras. This 
requirement for additional side-chan-
nel sources of information reduces the 
feasibility of the attack.

In addition, the organized crime 1 
model needs access to published TEKs 
through a jailbroken/rooted device or 
by imitating a contact tracing app.6 
W h i le obta i n i ng TEKs t h rough a 
jailbroken/rooted device might be 
feasible, imitating a contact tracing 
app is rather difficult. To mimic one, 
an attacker must fool or bypass the 
authorization system—specifically, 

TABLE 2. The synchronous change of Bluetooth 
addresses and RPIs in advertising packets.

Bluetooth address RPI

13:ac:57:35:3c:ea 59c62b86cdace1fe40446bc80689ccbd323588b8

33:5d:64:6b:cd:b7 3ad310dca4f810ef2b0a17968be47cb6ec59b6b6

09:b2:da:e9:eb:c6 6d5c54d1376e95b7872cfffc93425903102a1673

24:fe:37:59:2c:d6 0376829e0ebd180e82e5756e52ce7cbd7c465a03

04:2c:4d:b1:93:40 b5f1091b23a3871129a1225a6c3cebf175de28fa

THE APPS DO NOT USE ANY PERSONALLY 
IDENTIFIABLE INFORMATION, DEVICE 

IDENTIFIER, OR BLUETOOTH IDENTIFIER 
IN THE PROCESS OF SHARING COVID-19-

POSITIVE INFORMATION.
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an authorized administrative con-
sole, which is designed by GAEN to 
prevent malicious apps from down-
loading TEKs. Moreover, a malicious 
entity cannot fool the contact tracing 
app into accepting forged TEK export 
files. To maintain the back-end key 
server, an authorized contact trac-
ing entity (for example, the Virginia 
Depar tment of Health) must cre-
ate a key to sign TEK export files and 
share the corresponding public ver-
sion with Google/Apple, ensuring 
information authenticity.

Google and Apple also restrict 
app developers’ access to GAEN APIs 
through an approval process. Google 
added an extra layer of restriction by 
blocking access to the Android Soft-
ware Development Kit for regular app 
developers. These constraints prevent 
the misuse and abuse of GAEN APIs. 
The attack represented by the orga-
nized crime 2 model in Table 1 (ID 6) 
is difficult to launch in practice, as it 
requires hackers to gain access to vic-
tims’ smartphones.20 While issues 
including power and storage drains do 
not hamper the effectiveness of GAEN, 
vulnerabilities such as relay-and-replay 
and trolling attacks have an effect by 
increasing false positives. These false 
positives do not have an impact on pri-
vacy. Besides, our reported results do 
not assess the effectiveness of GAEN 
but focus on privacy issues.

Our findings confirmed that 
GAEN preserves privacy in 
a comprehensive collection 

of typical threat scenarios, including 
the walking trail causal encounter, 
your neighbor, organized crime, and 
stalker models. Compromising user 
privacy by exploiting GAEN requires 
a complex attack setup, for example, 

compromising a victim’s smartphone, 
mounting many Bluetooth radio devices, 
correlating additional victim infor-
mation, and accessing health-care 

systems. Besides, the built-in authori-
zation, permission, and policy enforce-
ment mechanisms in GAEN add an 
extra layer of difficulty to the attacks 
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proposed in the literature. Our article 
aims to help people understand and 
appreciate GAEN’s privacy protection 
and encourage them to adopt GAEN-
based contact tracing, which will be 
extremely powerful, as it will help us 
effectively manage this and future 
pandemics and minimize unnecessary 
casualties due to enhanced automatic 
contact tracing and its advantages, 
especially given the initial estimates 
of effectiveness.22 
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